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SECTION 1

INTRODUCTION

In this report, we develop a solution to the axisymmetric problem of a
tunnel in a Mohr-Coulomb medium with internal and far-field applied pres-
sures. The solution presented herein extends existing approaches by address-
ing generalized stress conditions and incorporating an arbitrary dilatancy
parameter. This parameter may be varied between certain limits, but is as-
sumed to be a constant for any given problem.

1.1 BACKGRCUND.

The basic approach to this problem was defined by Newmark (Reference 1)
prior to the widespread availability of high-speed digital computers and in
response to the need for a method for designing underground structures to
resist the effects of nuclear weapons. In the development of his solution,
Newmark assumed an elastic-plastic medium with volume constancy in a plane
strain configuration. Newmark's work was expanded by Hendron and Aiyer

(Reference 2), who provided the solution for a dilatant material which obeys
an associated flow rule. Newmark. as did Hendron and Aiyer, assumed that the
out-of-pldne stress (Oz) was the intermediate principal stress and that the

circumferential stress was the minimum (most compressive) principal stress.
The out-of-plane stress assumption is valid for a limited range of material
properties and loads; however, it is reasonable for many tunnel situations
and yields a relatively simple solution for the stress and displacement
fields because only one plastic zone develops.

Florence and Schwer (References 3 and 4) generalized the Hendron and
Aiyer solution by eliminating the requirement that az be the intermediate
principal stress. Their objective was to provide an analytical solution for

use in validating finite element calculations in support of experimental and
theoretical investigations of buried cylinders.

Eliminating the requirement that iz be the intermediate principal
stress substantially increases the complexity of the solution by requiring

one to deal with multiple yield conditions in a single problem. As stated in
Reference 3, these "depend on the relative magnitudes of the principal
stresses, and these relative magnitudes depend on the values of Poisson's
ratio and the friction angle." Florence and Schwer developed the solutions
for two different cases. For Case I (Reference 3), there are three



different plastic zones (each with a different set of governing equations) in

the material surrounding the tunnel. The problem geometry is illustrated in

Figure 1 (from Reference 3). For Case II (Reference 4), there are two

different plastic zones (each with a different set of governing equations) in

the material surrounding the tunnel. Case II geometry is shown in Figure 2.

Detournay. St. John, and Van Dillen (Reference 5) generalized the

Hendron and Aiyer solution to allow the use of an arbitrary dilatancy parame-

ter but their solution maintained the requirement that az be the intermediate

principal stress. A similar solution was developed independently by Merkle

(Reference 6), although we have not found it in published form. Use of the

arbitrary dilatancy parameter allows the material to undergo a volume change

that is intermediate between the volume constancy imposed by the Newmark

solution and the strictly associated flow rule dilatancy imposed by Hendron

and Aiyer. Detournay and St. John (Reference 7) assert that the dilatancy

parameter should be a variable that is a function of accumulated plastic

shear strain (and possibly of mean pressure). However, the use of such a

variable would require the application of numerical integration in obtaining

a solution.

1.2 SCOPE AND ORGANIZATION OF THE REPORT.

The solutions discussed in the previous section are "exact" only for

axisymmetrically applied static loads. Nevertheless, these methods

(particularly those of Newmark and of Hendron and Aiyer) have proven very

useful in investigating the effects of nuclear weapons on underground

structures constructed in rock. They have been used extensively by members

of the DNA community for developing preliminary designs of tunnel support

systems, preliminary hardness assessments of existing structures, and

estimates of targeting requirements.

Because they may be programmed on a personal computer and then easily

and rapidly applied, we expect these "exact" solutions will continue to be

widely used in the future to obtain preliminary structural response estimates

prior to performing detailed finite element calculations. Consequently, we

have extended the "exact" solution one step further by combining the general-

ized stress state of References 3 and 4 with the concept of arbitrary dila-

tancy from References 5, 6. and 7.

The solution is presented in the format used by Florence and Schwer in

References 3 and 4, insofar as possible. We have used the same notation, and

2
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equations are presented in the same formats (and, to the extent possible,

with the same numbers) as used by Florence and Schwer. Many of our equations

are identical to theirs and much of the introductory material is largely a

review of material in Reference 3. Each symbol is defined where first used,

and definitions of the more frequently used symbols are summarized in Table

1. We have adopted the Florence and Schwer sign convention by defining
tensile stresses and strains, applied pressures, and unconfined compressive

strengths as positive. This approach allows the reader to compare equations

with and without arbitrary dilatancy throughout the derivation.

In general, our approach is to replace the friction parameter "N"
(defined in Equation 2 below) by the arbitrary dilatancy parameter "M" in
expressions involving plastic strains or displacements. It can be demon-

strated that for associated flow (M = N), the present solution is iderlaical

to that of References 3 and 4.

The general solution for initial yield and the conditional inequalities

leading to Cases I and II are presented in Section 2. The solutions for

Cases I and II are developed in Sections 3 and 4, respectively. Step-by-step

procedures for applying the closed-form solutions and example problems that

demonstrate their use are provided in Section 5. With the permission of the

publisher, Reference 3 is presented in its entirety in Appendix A. It is our

understanding that the Case II solution of Reference 4 was developed under a

DNA contract, but was not published. That reference is provided in Appendix

B with the concurrence of the senior author.

5



Table 1. Definitions of frequently used symbols.

a - interior radius of the opening

E - Young's modulus for medium

G - shear modulus for medium

M - arbitrary dilatancy parameter

N - friction parameter

Pa - internal pressure acting on hole boundary

p: - negative of the radial stress at the elastic-plastic boundary

Pb - far-field pressure (compressive stress) at large radius

Pb - far-field pressure at initial yield

Pb - far-field pressure at which R =

pb - far-field pressure when the inner plastic zone begins to form

under Case II yield conditions

r - arbitrary radius to any point in the medium

R - radius to the elastic-plastic boundary
- maximum radius at which the radial and out-of-plane stresses

are equal

- minimum radius at which the radial and out-of-plane stresses

are equal

RO - radius to the elastic-plastic boundary when Pb =P

Ou - unconfined compressive strength of medium

Or - stress in radial direction

G0  - stress in circumferential direction

oFZ - stress in out-of-plane direction

Er - strain in radial direction

E0 - strain in circumferential direction

EZ - strain in out-of-plane direction

Note: Strains are further distinguished by the superscripts (e)

to denote elastic component and (p) to denote plastic component

V - Poisson's ratio for medium (0 < v < 0.5)

T - friction angle for medium

- flow constant of proportionality

6



SECTION 2

GENERAL CONDITIONS

In this section, the general solution is developed for initial

yielding of the medium around the tunnel. The conditional inequalities that

lead to Cases I and II are identified. All equations in this section are
identical to those in the corresponding portion of Reference 3.

2.1 INITIAL LOADING--OUTER ELASTIC ZONE.

Initially, let the internal and far-field (theoretically at infinity)
pressures Pa and Pb be equal. If these pressures are increased simultane-

ously until the material yields, initial yielding will be governed by the

yield function

f = (Ye - NaYz + ou = 0 (1)

where

N- 1+sing (2)
1-sinqp

Substitution of stresses (Or = GO = -Pb, az = -2VPb) in Equation 1 gives

Pa = Pb =- 2 v (3)1 -2Nv

And if Equation 3 is satisfied, the material will yield completely if 2Nv < 1

(such yielding is precluded if 2Nv > 1); consequently, to insure elastic

conditions in the far-field, the internal pressure will be limited such that

Pa < 1-U when 2Nv< 1 (4)1 -2Nv

though no such limitation is required if 2Nv > 1.

For the more general condition, once loading with Pa = Pb reaches the

desired value of Pa (e.g., the yield strength of a tunnel liner or the crush

strength of backpacking material), Pb can be increased to some higher value,

Pb > Pa. In the elastic condition, stresses and strains are given by

a2  a2

Cr = -Pb +(Pb -Pa) (YO = -Pb -(Pb -Pa) r- r2 G -VPb (5)

7



2GF r = -(I- 2V)P b + (Pb -Pa) -, 2GEe = -(1- 2V)Pb -(Pb -Pa) - , Ez = 0 (6)r2 r2

Note that the negative sign in the third of Equations 5 was omitted in
Reference 3.

2.2 INITIAL YIELDING.

Yielding will always begin at the inner surface, that is, at r = a.

The far-field pressure associated with initial yield is defined as Pb. In

Equations 5, Or > -Pb. 00 < -Pb. and Oz > -Pb. Thus, the minimum (most

compressive) principal stress will always be in the circumferential direc-

tion, but the maximum principal stress may be either radial or out-of-plane.
If the internal pressure (and hence the radial stress at the opening) is

lower in magnitude than 2vb (the out-of-plane stress), then 00 < Oz < Or at

the onset of yield (i.e., Or is the maximum principal stress), so the corres-

ponding yield function is

f=0e-NO r+ O u =0 (7)

The radial and circumferential stresses at the interior are computed at yield

from Equations 5. Substitution of those expressions in Equation 7 gives a

value for the external pressure Pb at the onset of yield.

= -[(N + l)pa + Ou  (8)

In order to satisfy the inequality Pa < 2v~b, it is required that

Pa <  YOU (N +l)v< 1 (9)1 - (N + 1)v

Alternatively, where Equation 1 governs the yield condition, the yield

pressure is given by

Pb - + u Nv< 1 (10)
2(1 -Nv)

For Nv > 1, the yield condition of Equation 7 rather than that of Equation 1

applies; consequently, Equation 8 is applicable. With Equation 10. the fol-

8



lowing restrictions on Pa are required

v VO < Pa< u O< Nv< 1 (11)

1 - (N + 1)v 1-2Nv 2

UVOu < Pa -< Nv, (N +1)v< 1 (12)
1-(N+I)v 2

Governing conditions for the above situations are summarized in Table 2,
which is equivalent to Table 1 in both References 3 and 4.

9



Table 2. Conditions at initial yield.

Yielding Case Stress Order Property Internal Far-field

at r = a Relations Pressure Pressure at

Initial Yield

Case I

p < 2 vb o<C <Tr (N+1)v<1 PU< vCT,,

1-(N +1)v PbZ[(N+I)Pa+u]

1< Nv
or Nv< 1< (N+1)v P.> 0

Case II

2 v<p< b Oe<Or<Oz Y <Nv, (N+1)v<1 P,> c-U -
1 -(N +1)v 2 (1 - Nv)

V(Y, . p a u
U <p< -<

<Nv< 1-(N+1)v 1-2Nv

10



SECTION 3

CASE I SOLUTION

As stated earlier, in Case I, three separate plastic zones (with
differing sets of governing equations) form in the medium surrounding the

tunnel. The governing equations are developed in the four subsections that

follow. In Section 3.1, the equations associated with initial growth of the
plastic zone (resulting from increasing Pb) are developed. This is followed

by three subsections in which the conditions governing the formation of the

outer, intermediate, and inner plastic zones are developed.

3.1 INITIAL GROWTH OF THE PLASTIC ZONE.

For Case I, the yield condition of Equation 7 controls in the outer

plastic zone. From equilibrium considerations we write

dcr

r + ar - G0 =0 (13)
dr

Circumferential stress can be determined from Equation 7 and substituted in

Equation 13. The result is then solved such that the radial stress at the
tunnel surface (r = a) is equal to -Pa

ar [Pa + 2 L1(L)Nl+ a<r<R (14)

L N-1 kaJ N-1

The flow rule for the yield condition of Equation 7 is given by

P f P) =x-XL xai = X tp) af= 0 (15)

Note that the first relationship in Equations 15 constitutes the first depar-
ture from the derivation of Reference 3. It differs from the corresponding
equation in Reference 3 only in the substitution of M for N in the radial
strain component. The arbitrary dilatancy factor M, introduced in References

5 and 6, can assume any value between one and N. Dots are used here to

designate differentiation with respect to external pressure. From this flow
rule, the following strain equations may be written (gl and g2 are unspecified

functions of r).

E()+ M )  0, E(!)+ ME( ) = g,(r), gP) 92(r) (16)

11



At the elastic-plastic boundary (r = R), there can be no plastic strains, so
we can write

C(P) + M E(P) = ,E(
p) =0 (7

r "+ = 0 (17)

Since strain increments are the sums of their elastic and plastic components,
we can write, for strain increments and total strains, respectively,

r= l(e) +  P), to =  (e) + t(p), tz= e) + t p)(i8

Er C (e) + (P) CC e0 4) + E() CZ =EM+CP (19)

Now, plane strain requires that the total out-of-plane strain be zero, so
from Equations 17 we can conclude that the elastic component is also zero,

i.e.

CZ =0, EM0, E() = :0 (20)

Elastic strains are related to stresses by Hooke's law.

EE e) : r -V((0 +z) (21)

E-(0 -v(o + ar) (22)

EEM c  *- v(r + O) (23)

And, since Ez is zero in the elastic region (outside the elastic-plastic

boundary at r = R). from Equation 23

o, = V(Q, + 0) (24)

From the yield condition of Equation 7, circumferential stress at the
elastic-plastic boundary can be expressed as a function of the radial stress.

Using this and Equation 24, Equations 21 and 22 can be used to express the
radial and circumferential elastic strains as functions of radial stress:

2Gc(e) = [1 -(N + 1)V]Gr + Vo (25)

12



2G(e) = [N -(N + 1)vIG, -(1 - v)Yu  (26)

Note that for computational convenience, the shear modulus is substituted for

Young's modulus at this point, as allowed by the relationship E=2G(I+v), and

strain terms in subsequent equations are frequently expressed in the form of

the left-hand side of Equation 26.

For the axisymmetric configuration, the following strain-displacement

relationships apply

du uSr =-r E=- (27)
dr' r

from which the compatibility equation can be written as

r de + -0 - Cr = 
0  (28)

dr

Using Equations 19 to separate strains into elastic and plastic compo-

nents, Equations 17 to express radial strain in terms of circumferential

strain, and Equations 25 and 26 to substitute for the elastic strains, we can

rewrite Equation 28 as

d_(P) ) 1-v r N -1

r e +-(M+1)- -=-(N 1)[(N -1)Pa + au] (29)
dr 0 2G(a

By inspection, it can be seen that this differs from the corresponding

expression in Reference 3 only in the substitution of (M+1) for (N+1) on the

left-hand side, and indeed degenerates to the identical equation for the case

where M = N. The solution to Equation 29 is readily determined by direct

integration over the interval from r = r to r = R. The resultant solution is

I-v NI[(,)N)P[( UM+a _(rN- (30)

C()= ----- [(N -1)Pa 8 G

The counterpart of equation 30 in Reference 3 contains a typographical error

N+I
in that the second term on the right-hand side should read N The plastic2N

component of radial strain can be obtained from Equations 17 although at this

13



point, R remains unknown.

If the material inside of radius r = R is assumed to be replaced with
a pressure p. it follows from Equations 5 that

Or (R) = -p, Oa(R) = - 2Pb + p, Gz(R) = - 2vPb (31)

Since the yield condition of Equation 7 is applicable at r = R.

Pb = 1[(N + 1)p + Ou] (32)
2

o r (R) - 2 Pb - Ou (33)
N+1

Equating the radial stress from Equation 33 to the radial stress computed
from Equation 14 for r = R yields

(R)N-1_ 2 (N -1)Pb + Ou  (34)
a) N+1 (N-1)Pa+Gu

When (N+I)v > 1, Oz will be the intermediate principal stress through-

out the plastic zone and the foregoing procedure is adequate to completely
define the solution. This corresponds to the Hendron and Aiyer solution as
modified by Detournay and St. John to include arbitrary dilatancy.

If (N+l)v < 1, the elastic-plastic boundary still forms at r = R, but
this condition exists only as long as Oz is the intermediate principal
stress, i.e. as long as Or < -vou/[1-(N+l)v]. From Equation 14, we see that

Or is maximum (least compressive) at r = a and minimum (most compressive) at
r = R. This implies that as the loading increases, a plastic zone forms, in
which the radial and out-of-plane stresses are equal. In Figure 1, this is
the annular region between r = R and r = R, where R and R are defined as the
minimum and maximum, respectively, radii where Or = Oz. At r = R then, we

have

°r(R=°zR)= 1 1-(N +1)v (5

and from plane strain considerations, the circumferential stress is

( - v)O U  (36)
1-(N +1)v 14



We compute the external pressure at which R = R from Equations 31 and 35 as

Pb = U1 (37)2[1 - (N + 1)v]

which can then be substituted in Equation 34 to compute

I )N-1 = _ (1 -2 V) (38)
(a [1 - (N + 1)v][(N -1)pa + 3u8

Note that Equation 38 does not involve 1b, from which we can conclude

that as Pb is increased beyond Pb, R remains constant.

3.2 INCREASED LOADING--OUTER PLASTIC ZONE.

As discussed earlier, Ge<Q,<O, at r = R. Therefore there must be a

third plastic zone between r = R and r = R, as shown in Figure 1, which
develops when Pb is increased beyond Pb. In this region, the yield condition
of Equation 1 applies and the flow rule (with arbitrary dilatancy) is

r = 0, z(o° = X tp) = MX (39)

In the same manner that strain relations were developed from the flow rule of
Equations 15, strain relations can be derived from Equations 39 as

CP) + MEc( = 0 E =0 (40)

Z 0 r

and from the plane-strain condition,

Er =E (e) EO =E(e) + (e) =

r Er M Zoe~£-M z' cz = 0(41)

Also, in the manner that Equations 25 and 26 were developed using the Hooke's
law relationships (Equations 21 through 23), Equations 41 can be used with

Equation 1 and Hooke's law to obtain expressions for radial and circumferen-
tial stress in the outer plastic zone

[MN + i - (M + I)(N + l)v]or = [MN + I -(M + N)v]2GEr + M(N + I)v2Gc o + (M -1)vo u  (42)

15



[MN + 1 - (M +1)(N + 1)v]o0 = N(M + 1)v2Ger +MN2GFe -[1- (M + 1)v]o u  (43)

and with Equations 13 (equilibrium) and 27 (strain-displacement), this

results in the following differential equation for radial displacement

r d2 u du[ (M -N)v2  p2u p2 (I-2v)au r (44)r +r[1] +u (4

dr 2  dr MN MN 2G

-:here

= MN (45)
MN +1 -(M + N)v

Note that Equation 44 of Reference 3 contains two typographical errors; the

right-hand side should be c'(12v)Gur. Solving Equation 44 for radial
N2  2G

displacement gives

2Gu = Air ', + Ar -1 + A. r (46)

The corresponding strains are

2G du = 2Ge,. = yjA1rY 1 -y 2A2r -Y' -l + A (47)
dr

2G- = 2GFe = Air r " + A2r "yZ-' + A (48)
r

where

2 (N-M)v 12 (N-M) 2v 2  1 =,(M-N)v+ 2 (M-N) 2v2  1
2MN (MN) 2  *-, y2 2MN (MN) 2

A- (1 - 2v) 0. (49)
1-2Nv

and A, and A2 are constants, yet to be determined.

Compared to the associated-flow-rule formulations of Reference 3.

Equations 46, 47, and 48 involve additional factors and non-identical powers

of r. In spite of these complexities, for the case where M = N. Y1 = 2= 1,

16



and P is identical to the term (x used by Florence and Schwer. Consequently,

Equations 46, 47, and 48 become identical to their Reference 3 counterparts.

We can employ the equilibrium and compatibility conditions at the

elastic-plastic boundary (r = R) to equate radial stresses and circumferen-
tial strains across the boundary. From Equations 1 and 5, the elastic-zone

radial stress is

Or (R) = -2(1 - Nv)Pb + ( u  (50)

from which the circumferential strain can be obtained, using Equation 26, as

2Gc(R) = -2(N -1)vpb -a0u  (51)

Invoking compatibility of radial displacement (or circumferential strain), we

can equate the right-hand sides of Equations 48 and 51, resulting in

c1  2(N-1)v ko, -(1-2Nv)Pb] (52)1-2Nv

From equilibrium, the elastic radial stress from Equation 50 is equated to
the plastic zone stress from Equation 42, and by substituting strains from

Equations 47 and 48

blAR y l_- + b2 A2R-y' -l = c2  (53)

where

bi = M(N + 1)v + [MN + 1 - (M + N)vlyl,

b2 = M(N + 1)v - [MN + I - (M + N)vly 2,

c2 = 2 1 [MN + 1 -(M + 1)(N + 1)v][o, -(1 - 2Nv)pb]
1-2Nv

Since Equations 52 and 53 are linear in Al and A2 , we can solve simultaneously

(in terms of unknown R) as

c -bc 1 Bi1  b bc-bc ( B 2 (53.1)
b1-b2  ) -1 b 1- 2  _Y2 -1
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At the assumed plastic-plastic boundary at r = R and in the plastic

zone between r = R and r = R, the radial and out-of-plane stresses are equal

and the yield conditions of Equations 1 and 7 are both valid. Using Equation

7, we can now write

NOr (R) - (o (R) = o u  (54)

Since the stresses from Equations 42 and 43 are valid at r = R, we can

substitute them in Equation 54 to get

b3A1R7y - + b4A2 IY'21 = c3 1-2v CFu  (55)

where

b3 = M[(N+l)v-1]+[MN+1 -'i- , "-v]y1

b4 = M[(N +i)v-I]-[MN+1 -(2M+N+l)v]y 2

c3 = [MN + 1 -(M + 1)(N + 1)v]

The expressions for Al and A2 in Equation 53.1 can be substituted in Equation

55 to define the ratio of R to R.

b3 RK 1-+ RY2-1 j 1-2v (56)
KRR 1-2Nv

Since the ratio cannot be solved for explicitly, an implicit scheme will be

required, but rapid convergence is expected. The radius R remains unknown

npnding consideration of the region from r R to r = R.

3.3 INCREASED LOADING--MIDDLE PLASTIC ZONE.

As noted above, both of the yield conditions (Equations 1 and 7) are

valid in the region R < r < R, and are restated here to continue the paral-

lelism with Reference 3.

f, =  - Ny, + Y 0 (57)
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f2 = aq -NO, + a, = 0 (58)

From Equation 57 we obtain an expression for circumferential stress to

substitute into the equilibrium equation (Equation 13). The resulting

differential equation is

r + or ( - N) = -o, (58.1)
dr

for which the solution is

O(R)N- [ (ROr r ] (59)0r ar R R 1 N-1

If Or(R) and R (from Equations 35 and 38) are substituted in Equation 59, it

becomes

o ](rN-i
Cy -1 +NlU (60)Or= P8. (60)L

I+ N-i a N-1

Since Equations 57 through 60 are independent of the flow rule, they are

identical to their counterparts in Reference 3.

We recall that Equation 42 (radial stress) is valid in the region R < r

< R and Equation 60 is valid for R < r < R. Since we must assure continuity

of radial stress at r = R, we can equate the two expressions (evaluated at r

= R) to obtain an expression for

-1+ 2ARY - =c 3 N(1 - 2v) a-c 3 p8 + _!!(61
(N -1)(1 - 2Nv) -i -1)a

with bl, b2, and c3 as defined in Equations 53 and 55. The expressions for A1
and A2 from Equations 53.1 can be substituted in Equation 61:

b1B1 -1 + b - -1 N(I - 2v )  ( + (!u )RN-1 (62)

(R) ~ ~(N -1)(1 -2Nv)N- a

Since R/R was determined in Equation 56, R can be computed from Equation

62. R can then be obtained from R/R. Then, Al and A2 can be calculated
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explicitly from Equations 53.1, which is repeated here as Equation 63, again

to continue the parallelism with Reference 3.

c,-b C 1 _b 2A2 :- bcl- 1) B22 (63)A b I b _bz 2
Y - , A bi _bz 2 R-y, -1

Strains and displacements in the region R < r < R can then be computed

from Equations 46 through 48; stresses are available from Equations 1, 42,

and 43.

For the yield conditions of Equations 57 and 58, the flow rule with ar-

bitrary dilatancy is

r fl + X2 f = f 1X1 (64)-r yrI a(yr

(o) = afL + X2 -L; = X1 + X2 (65)

z =X = -XM, 2  (66)

from which

g(r) = + M=(P) ( (P) + 0 (67)

We designate the plastic strains as P), . E when r = R, so that

g(r) =P) + MT( p) + T(P)  (68)

Since Equation 40 is applicable in the region R< r < R, g(r) = 0. from which

(P) M (P) + (P) =0(9
r0 (69

and with E e) = -E p) from the plane strain condition,

Cr = _MEo + ME(e) +E(e) + (e) (70)
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With Cr = (Yz given by Equation 60 and using the yield condition of

Equation 57 we can write Hooke's law from Equations 21 through 23 as

E = E s) = [1 -(N +1)vIOy + vCF (71)

Ee(e) = (N-2V)Cr - CF (72)

Elastic strains from Equations 71 and 72 can be substituted into Equation 70.

Substitution of the radial strain expression thus obtained into the compati-
bility equation (Equation 28) yields a differential equation in terms of the

circumferential strain

2Gr d(rW14+e)= MN +2-2(M+ N +l)v[(N 1)p, + M.N- 1

dr C(N -1)(1 + v)

+(M + 2)(I - 2v)(YU rW (73)

(N -1)(1 + v)

This differential equation is directly integrable, and integration over the
limits of r to R results in the following expression for co

-- w1MN+2_2(M+N+I)v[( M+ wN _l](r fl

2G F-0 = 2G e8  (R ) ( r7. + (M + N N -1)(1 + v ) I N)p + c ru { -j -a

(M+2)(1-2v)0 U  I 11 (74)
(N -10 ) 1)(1 + v) (r j

Eo(R) can be obtained from Equation 48 since we now have values for A, and
A2. The radial strain is obtained from Equations 70 through 72 giving

2GE, = -2GMEO + MN+2-2(M+N+1)v M-2v (75)
1 + V r + V

3.4 INCREASED LOADING--INNER PLASTIC ZONE.

For an applied pressure in excess of Pb, stresses in the inner plastic

zone, a < r < R, remain constant. Radial stress is given by Equation 14 and

the radial and out-of-plane plastic strain components are given by Equations

17. Equation 29 is valid in this region, but we must perform the integration
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from r to R for this condition, which yields the circumferential plastic

strain as

2Gc (p) = 2 Ge(P)(R) (N + [- v)[([-)pa + (76)

0 0  r a r R

Elastic strains are available from Equations 20 through 26. In order to

compute the circumferential strain at r = R from Equation 76, we can compute

the total strain from Equation 74 evaluated at r = R and subtract the elastic

component. Circumferential and out-of-plane stresses are determined using

Equations 7 and 24.
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SECTION 4

CASE II SOLUTION

As stated earlier, Florence and Schwer presented the solution for Case

II in Reference 4. Since that reference is a "stand-alone" paper, they re-
peated some, but not all, of the equations from Reference 3 with different
equation numbers. Consequently, from this point forward, we do not use the
Florence and Schwer equation numbers, but we continue to follow their format.

For the convenience of the reader, several of the equations developed earlier

are repeated in this section.

As discussed in both References 3 and 4, there are at most two plastic

zones for Case II. The problem geometry is shown in Figure 2 (from Reference

4).

4.1 INITIAL GROWTH OF THE PLASTIC ZONE.

As shown in Table 2, the order of the principal stresses at initial
yield is 0O < Gr < 0 z for Case II. Therefore, the yield condition of

Equation 1 applies.

f=eo-No + O u =0 (1)

For this condition, with arbitrary dilatancy, the flow rule was given in
Equations 39.

(p) =0, (p)= X, tp) = -M? (39)

from which the plastic strain relationships, given by Equations 40,

4P)+ 0, =0 (40)

were derived. Incremental and total strains are given by Equations 18 and
19.

Cr.(e) + t(P) t() = (e) + t(P) + (18)r 0 0 z 7 Z(18)

Er (re)+ E(P), C()= E e)+ ( p ), Cz = 
c e) + C(P) (19)
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from which the three components of total strain, given by Equations 41,

Er =C(
e)  e (e) + (e)=0 (41)

are obtained. The yield condition of Equation 1 allowed us to eliminate Oz

from the Hooke's law expressions of Equations 21. 22, and 23,

E(e) = -v(0 + o) (21)

E (e) =Go; - V(Oz + Or )(22)

E(e) = (22)

E£(e) = z -V(0rae) (23)

which led to the expressions for radial and circumferential stress in terms

of strain in Equations 42 and 43.

[MN + 1 -(M +1)(N + 1)V]or = [MN +1 -(M + N)v]2G-r + M(N + l)v2G£ e + (M -1)vo u  (42)

[MN + -(M + 1)(N + 1)v]aoe = N(M + 1)v2G-r + MN2G% -[1- (M + 1)v]O U  (43)

Equation 13,

dOr
r + Or -0o = 0 (13)

dr

(equilibrium) and Equations 27,

du uEr = - Eo = - (27)
dr' r

(strain-displacement) were then used to obtain the differential equation of

displacement given by

dru dul + (M - _ 2U p2 (1 - 2v)OU
+rN_ _ 2]-_ Z =--- (44)

dr2  dr MN MN 2G

The solution of Equation 44 is

2Gu = A r1 + A2rY +A-r (46)
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and the associated strain relationships are

2G du = 2Ger = yiA1rI'I -y2A2r-Y'I + A (47)
dr

2Gu = 2Gc O = AirY I + A-rT'-I + A (48)
r

Continuity of displacement (or circumferential strain) and radial stress at

the elastic-plastic boundary (r = R) then allowed us to write Equations 52

and 53.

AIR Y'-I + AR "2I =cC,c = 2(N -1)v [F, -(1 -2Nv)pb  (52)1-2Nv

b1AIR YI'1 + b2A2R"YI' = c2  (53)

where

b, = M(N + 1)v + [MN + I - (M + N)vly i ,

b2 = M(N +1)v -[MN +1 -(M + N)vly 2 ,

C2 2-1 -v [MN+1-(M+1)(N+l)v][o. -(1-2Nv)pb]
1-2Nv

Expressions for stress and strain in the elastic zone were developed

Cr (R) = -2(1 - Nv)pb + Ou (50)

2Gce (R) = -2(N -1)vpb - Ou (51)

Ir, Fquation 53.1,

A= czb 2 c (1 =~B bc- c B 1 (53.1

-b -b2  R R- Zl (53.1)

expressions were found for the unknown constants A1 and A2 in terms of the

still undetermined radius R to the elastic-plastic boundary.
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Note that to this point we have merely reiterated conditions developed

in Section 3. For Case II, substitution of the negative of the internal

pressure -Pa for Tr and the radial and circumferential strains from Equations

47 and 48 into Equation 42 yields

bAa1_ + 2a - 4 0. -. (77)
b1 -2Nv p] (77)

where the terms bl, b2. and C3 are as defined in Equations 53 and 55.

Using the definitions of Al and A2 from Equation 53.1 gives the

following equation from which the radius R to the elastic-plastic boundary

can be calculated.

b1B (a) 7 +b 2B2 (a)- C3[ YU P] (78)

Note that the corresponding equation in Reference 4 (Equation 38) appears to

contain a typographical error; the second term exponent should be 1+0.

As long as Or < Oz (the outer plastic zone if Figure 2), radial and

circumferential strains can be computed from Equations 47 and 48. Equations

42 and 43 can then be used to get the corresponding stresses.

4.2 INCREASED LOADING.

As with Case I, it is possible to increase the external load to a

magnitude such that the out-of-plane stress will equal the radial stress.

This condition results in formation of the inner plastic zone of Figure 2.

In this situation, the radius R can no longer be obtained from Equation 78.

As Pb is increased, the inner plastic zone begins to form when the out-

of-plane stress first equals the radial stress at the edge of the opening,

i. e., at r = a. The far-field pressure at this instant is defined as Pb,

and the corresponding radius to the elastic-plastic boundary is defined as

R'. The development of expressions for these terms is described in the fol-

lowing paragraphs.

The expressions for radial and circumferential stress in the outer

plastic zone were presented in Equations 42 and 43. Because stress

continuity is required across the boundary between the two plastic zones,
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these equations hold at r=a when Pb=P . Upon invoking the definition of C3

from Equation 55. Equations 42 and 43 become

C3(yr = [MN +1 - (M + N)v]2GEr + M(N + 1)v2Gs6 + (M -1)vaY, (79)

CA~e = N(M+1)v2Ger, +MN2Gce -[I-(M+1)v](r, (80)

The out-of-plane stress from the yield condition of Equation 1 is

= Ge + C'. (81)N N

Combining Equations 80 and 81 yields

1

c3o. = (M + 1)v2Ge, + M2GEe -[I -(M +l)v -c 3 ICY (82)
N

At the edge of the opening, i. e., at r = a, Gr = z -Pa, and strains

cr(a) and EO(a) may be obtained from Equations 47 and 48. When these substi-

tutions are made, Equations 79 and 82 become

-c3P= [MN +1-(M+ N)v] Yic'B3 (a -Yc'B, (a +A]

[M(N . v cB j + cB,( ) 1A] (M-1)vQ( (83)

cp, = [(M 1)v{y,c'B, a - -YcB, ( a + A]

+M cB3 (a + ±c'B4 (aj + A]1 [1 (M +1)V -c3 ]}au (84)r RP R ,'-  ' I ]

where the constants B3 and B4 are obtained by rearranging the expressions for

Bi and B2 (Equations 53.1)

cB=.. [0(1-Nv)b-b, (85)
b -b2 [ (N-1)v J

CB = [b,C 3 -Nv)] (86)

b1 - b2 [ (N -1)v
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The term c' is defined as the value of c1 (from Equation 52) when PbP = p '

c 2(N-1)vo -(l-2Nv)p ] (87)1-2Nv

Equations 83 and 84 may be solved simultaneously and, after invoking

the definition of COfrom Equation 87, we obtain

a =[ B3 {2va. -(1- 2Nv)p,}bi - {a -(1- 2Nv)p,}{M + (M + 1)vy} 88)I
R' B4 {2vor -(1-2Nv)p,}b 2 -{oQ -1-2Nv)pjjM-(M+1)V 7 }J (88)

and

c( a. _P.)

_ O - 1-2Nv (89)

1-2Nv 2(N 1)v bB(ay)"I' + b2B4 (.D a

Since Pb is the minimum far-field pressure that will cause a second plastic

zone to form, this equation can be used to determine whether one er two
plastic zones will form.

The maximum radius at which the radial and out-of-plane stresses are

equal was defined earlier as R. An expression for the ratio of R to R can be

developed in a fashion similar to that employed in the development of

Equation 56 for Case I.

The stresses at r = R can be expressed by

a,(R) = o1 (R) (90)

As stated above, the out-of-plane stress from the yield condition of Equation

1 is

ZN GO + -U (81)N N

Circumferential stress (at r R) from Equation 43 is substituted in Equation
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81, which is then equated to the radial stress from Equation 42 to get

[M(N - 2v) - Nv + (1 - v)I2Ge, + M[Nv - (1 - v)]2GFe = M(I - 2v)a, (91)

Substitution of strains from Equations 47 and 48 in Equation 91 gives

b3A1R"' + b4A2RY -1 = c 3 1-2v a(92)
1-2Nv

Equation 92 is identical to Equation 55 and the terms b3 , b4 and c3 were

defined in conjunction with that equation. Using the definitions of Al and

A2 from Equations 53.1 yields an expression for the desired ratio

=C3 1-2v G (93)b3B + bB2I- 7 3
1(R) R) 1-2Nv

which is identical to Equation 56. As with Case I. R remains unknown pending

consideration of the region where Or = Oz. Also, as with Case I, both yield

conditions (Equations 57 and 58) are applicable when Or = Oz (the inner

plastic zone in this case).

f= 0 - NGr + Ou =0 (57)

f2 = 00 - NOz + au = 0 (58)

Using Equation 57 and the equilibrium expression of Equation 13

dOr
r O-+r - 00 = 0 (13)
dr

Radial stress can be expressed by Equation 60.

S+Ou ]( r ) N-' Ou (0

Cr [- Pa +-N- (60)

In order to satisfy radial stress continuity at r = R, we again set Equation

60 equal to Equation 42 and substitute strains from Equations 47 and 48, all

quantities being evaluated at r = R. As with Case I, this yields Equation

62.

b R -
+ b RR_B-

2 ' -  N(I-2v) N -1 (62)
b1B1L + b2Ba  = ca C3_)(_2 GU -c 3 pa + - )( 62

(N -1)(1 - 2Nv)29



Since R/R was determined by Equation 93, R can be computed from Equation 62,
as was done in Case I, and R can then be obtained explicitly.

The flow rule expressed by Equations 64, 65, and 66

t(p) = X, afi + X2 = - =MX 1  (64)r a(Yr a a(r

t(Xp) = X 1
-af .+ X2X 1 + X2  (65)0 a0 Do()

t~)= X, af a, - f  - (66)
Ez IDOz 

+  D~z
=

again leads to the plastic strain expression of Equation 67:

g(r) = E(p ) + ME(p) + EP) = 0 (67)

At r = R, the plastic strain expression of Equation 68 follows

g(r) = P)+ ) + -Ep)  (68)

which, with Equations 40 (which hold in the outer plastic zone),

C (P + ME (P =o 0,I E()o (40)

leads to Equation 69:

E(P) + MEW + C(P) = 0 (69)
r 0 Z

Invoking the plane strain constraint, radial strain can be expressed by

Equation 70

C, = -MCO M- - e) + -e) + E. (70)

Since Cr = az in the inner plastic zone, the Case I derivation of Equations

71 and 72 also holds.

E0 ' ) = E cI- = 11 -(N +l)vcyr, + vo (71)
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EE(e) = (N-2v)ar - (72)

As with Case I, a differential equation for the circumferential stress

in terms of r is given by Equation 73 when elastic stresses from Equations 71

and 72 and radial strain from Equation 70 are substituted in the

compatibility expression of Equation 28.

2G _d (r = -0) : MN+2 -2(M+ N+I)v [(N 1)p + Y ]  N .1

dr (N -1)(1 + v)

+ (M + 2)(1-2v)aM r" (73)
(N -1)(1 + v)

Again, Equation 73 can be solved by direct integration from r to R to

get the expression for circumferential strain in Equation 74. As before,
Eo(R) is obtained from Equation 48. Radial strain is given by Equation 75
which was obtained from Equations 70, 71, and 72.

2G2GFe(R) -- M- MN+2-2(M.N.1)v[(N 1)p, + y , N-

MG8  0 (M + N)(N -1)(1 + v)r) -

iN-1)(M+I)(+v)[( r)

2Gc, : -2GMe 8 + MN+2-2(M+N+)v r - M-2v (75)l+v l+v

Florence and Schwer (Reference 4) determined that for Case II with an

associated flow rule, an inner plastic zone, where cz was the intermediate

principal stress, did not form. Since our equations for stress in the inner

plastic zone are identical to theirs (i.e., they do not involve M), their de-

termination holds for the case of arbitrary dilatancy.
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SECTON 5

APPLICATION OF CLOSED-FORM SOLUTIONS

In Section 5.1, procedures for applying the solutions developed in the
foregoing sections are discussed. Some numerical examples are presented in

Section 5.2.

5.1 PROCEDURES.

The solutions for problems of axisymmetric compression of Mohr-Coulomb
materials with arbitrary dilatancy are quite complex, as are the procedures
for applying them. Consequently, we have developed a "road map" that is in-
tended to aid the reader, first in determining the appropriate solution case
(i. e., Case I or Case II yielding), and then in selecting the proper equa-
tions to define the stress and strain fields.

The proper solution case may be determined from the conditional in-

equalities listed earlier in Table 2. These inequalities involve only the
quantities Pa, Pb, V, au, and (p (or N). These and the other parameters that

must be known (either given or assumed) at the beginning of the problem are
listed in Table 3. The process is detailed in Table 4. The decision logic
of Table 4 is illustrated schematically in Figure 3. Note that the process

of determining the proper yield condition is independent of the dilatancy
parameter M.

As may be seen from Table 4 and Figure 3, there are four possible
outcomes: (1) the Mohr-Coulomb medium yields everywhere, (2) the medium is

elastic everywhere, (3) the medium yields under Case I conditions, or (4)
the medium yields under Case II conditions. In both Cases I and II, the
far-field medium remains elastic. Depending upon which condition prevails,

the reader is directed to Table 5. 6, 7, or 8 for the appropriate step-by-
step procedure. Because of the length of these tables, they are located at

the end of this section.

As indicated in Table 4 and Figure 3, if under Case I, (N+1)v 1,

only a single plastic zone will form, regardless of the value of Pb Pb. This

condition follows from the fact that cz will be the intermediate principal

stress throughout the plastic zone when (N+l)v I. On the other hand, if

(N+l)v < 1, the three plastic zones shown in Figure 1 will form as Pb is

increased.
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Table 3. Known parameters.

The following parameters must be either given or assumed:

Unconfined compressive strength cyu

Friction angle q (or N= 1+sin(p
1 -sinqp

Poisson's ratio v

Arbitrary dilatancy factor M, 1-_M_<N

Internal pressure Pa

External pressure Pb

Shear modulus G (or E = 2G(I+v))

Interior radius a (not required when results are normalized with

respect to radius)
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Table 4. Process for determining proper step-by-step
procedure to follow.

If Nv < andPa> ,then the far-field yields everywhere and the
1-2Nv

solution is not valid--quit.

Otherwise, compute (N+l)v

If (N+l)v>1, Case I yielding will occur for Pb Pb. Use the single-plastic-

zone procedure of Table 6.

Vou

Otherwise (i.e., (N+1)v<l). compute 1-(N+)v

Vyu
If Pa < 1-(N+I)v' Case I yielding will occur for Pb >pb. Use the three-

plastic-zone procedure of Table 7.

Otherwise, Case II yielding will occur for Pb >pb. Use the procedure of
Table B.
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In the three-plastic-zone case, only a single plastic zone will form

when the far-field pressure is small, i. e., when pb Pb<pb. However,there

will not be a situation under Case I where two plastic zones form. This is

true because the middle and outer plastic zones begin to form simultaneously

when Pb = Pb because R=R=R at that instant.

Under Case II yielding, the general situation is two plastic zones as

shown in Figure 2. However, as with Case I, only a single plastic zone will

exist at low far-field pressures, i. e., when pb b<Pbp

In the step-by-step procedures (Tables 5 through 8) the equations de-

veloped in the foregoing sections are arranged in order to allow one to ex-

peditiously determine the stress and strain fields in the medium surrounding

the tunnel. Appropriate amplifying comments have also been included in the

tables. In general, each procedure begins with the computation of required

constants, followed by the determination of the plastic-plastic and elastic-

plastic radii, and concludes with the equations necessary to completely

define the stress and strain fields in each zone. For the reader who is in-

terested in determining only the circumferential strain at the tunnel wall

(equivalent to the negative of tunnel closure (AD/D) in axisymmetric
problems of this type), the special case for seat r = a is presented at the

end of each table.

Equation numbers from the foregoing sections have been repeated in

Tables 5 through 8. A primed equation number indicates that the equation

has been modified in some way. Where two equations have been combined, the

numbers of both are given. Equations that appear in the tables without

numbers are unique to the step-by-step procedures. In the tables, we have

continued the use of twice the shear modulus times the strain, rather than

expressing the strains explicitly.

5.2 NUMERICAL EXAMPLES.

Two numerical examples are presented, using the input parameters spec-

ified by Florence and Schwer in References 3 and 4. In addition to indicat-

ing some of the effects of arbitrary dilatancy, these examples illustrate

the process for determining the appropriate yield case.

5.2.1 Case I Example.

For this example, input parameters, taken from Florence and Schwer
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(Reference 3). are:
Unconfined compressive strength, cru = 2,000 psi (13.8 MPa)

Friction angle, (p = 300, N = 3
Poisson's ratio, v = 0.2

Internal pressure, Pa = 500 psi (3.45 MPa)

Far-field pressure, Pb = 6,000 psi (41.4 MPa)

Shear modulus, G = 106 psi (6,895 MPa)

Interior radius, a (not specified--results presented as functions of

r/a)

Three different values of the arbitrary dilatancy parameter are used. These

are (1) M = N, (2) M = 1, and (3) M = (N + 1)/2.

The first step is to determine the appropriate step-by-step procedure.

Starting at the top of Table 4, Nv = 0.6 > 1. so the solution procedure is

valid.

Next, (N + 1)v = 0.8. Therefore, (N + 1)v < 1. In addition.

V_ u -800

1 -(n+1)v

and

pa = 500< 800

which indicates that the Case I yield condition applies, so the procedures
of Table 7 should be used.

The first step in Table 7 is to determine whether the specified value
of Pb will cause yielding to occur and, if so, whether one or three plastic

zones will form. Therefore,

Pb = 6,000> 1[(N +)Pa + (,]: 2,000
2

which indicates that yielding occurs. Next

G = 5, 000 < Pb = 6,000

2[1 - (N + 1)v]

Therefore, Pb is sufficiently large to cause the formation of three plastic
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zones.

For the upper-bound case where M = N, calculated radius ratios are (1)
R/a= 12, (2) R/a=1.527, and (3) R/a=1.598. Stresses and strains for this

case are plotted in Figure 4. Except for differences in scale, these plots
are identical to the Florence and Schwer results (Figures 2 and 3 of

Reference 3). Contrary to the established sign convention, we also plotted
all compressive stresses in Figure 4 (and subsequent figures) as positive to
facilitate comparisons with the Florence and Schwer results. Tensile

strains are shown as positive, both here and in Reference 3.

For the lower-bound case where M = 1, the calculated radius ratios are

(1) R/a=-/'I, (2) R/a=1.523, and (3) R/a=1.596. For the intermediate case

where M = (N + 1)/2 = 2, the ratios are (1) R/a=V_21,(2) R/a=1.526, and (3)

R/a =1.598.

The ratio R/aremains constant as M is varied since, as may be seen in

Equation 38, it is not a function of M. The other two ratios change
slightly when M is increased from M = 1 to M = N.

Stresses and strains for all three cases are plotted in Figure 5.

Note that the horizontal scale is more than double that of Figure 4. For
this example, there are no discernible differences in the stress plots.

Strains differ significantly at the edge of the opening, but are nearly
identical, regardless of the value of M, beyond r/a of about 1.5.

5.2.2 Case II Example.

Input parameters for this example were taken from Florence and Schwer
(Reference 4):

Unconfined compressive strength, cru = 3,000 psi (20.7 MPa)

Friction angle, p = 19.50. N = 2
Poisson's ratio, v = 0.2

Internal pressure, Pa = 2,000 psi (13.8 MPa)
Far-field pressure, Pb = 6,000 psi (41.4 MPa)

Shear modulus, G = 0.5 x 106 psi (3,447 MPa)

Interior radius, a (not specified--results presented as functions of
r/a)

Again, three different values of the arbitrary dilatancy parameter are used:
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Figure 5. Computed stresses and strains for Case I example with different
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(1) M = N, (2) M = 1, and M = (N + 1)/2.

Beginning at the top of Table 4, Nv=0.4<}. However,

GU =15,000 > p, = 2,000

(1 -2Nv)

so the solution procedure is valid. The next condition is (N+l)v=0.6.

Therefore, (N+1)v<l. In addition,

VOU =1,500

1 -(N + 1)v

and P, = 2,000>1,500, which indicates that the Case II yield condition

applies, so the procedures of Table 8 should be used.

The first step in Table 8 is to determine whether the specified value
of Pb will cause yielding to occur. Therefore,

Pb = 6,000 > pa + Ou = 4,167
2(1 -Nv)

which indicates that yielding occurs.

Next it is necessary to determine whether one or two plastic zones

will form.

In the case of M = N.

p' = 4,529< Pb = 6,000

so the two-plastic-zone procedure applies.

For the upper-bound case where M = N, calculated radius ratios are (1)

R'/a = 1.100, (2) R/a = 1.190, and (3) R/a = 1.555. Stresses and strains

for this case are plotted in Figure 6. Except for differences of scale,

these plots are identical to the Florence and Schwer results (Figures 2 and

3 of Reference 4). Florence and Schwer state that they used a shear modulus

G = 106 psi (6,895 MPa). However, their plotted strains are consistent with

2G = 106 psi (6,895 MPa).

The two-plastic-zone procedure also applies for the other two values
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of M. For the lower bound case where M = 1, the calculated radius ratios

are (1) R'/a = 1.114, (2) R/a = 1.175, and (3) R/a = 1.566. For the

intermediate case where M = (N+1)/2 = 1.5, the ratios are (1) R'/a = 1.104,
(2) K/a = 1.185, and (3) R/a = 1.558. Changes in the radius ratios are
quite small. R'/a and R/a decrease by 1.3 and 0.7 percent respectively
while K/a increases by 1.3 percent as M is increased from M = 1 to M = N.

Stresses and strains for all three cases are plotted in Figure 7.

Anain. note that the horizontal scale is more than double that of Figure 6.
Stresses vary only slightly with changes in M. Radial strains differ

significantly at the tunnel wall, but circumferential strains differ only
slightly. Both stresses and strains are nearly identical, regardless of the

value of M. beyond r/a of about 1.5.
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Table 5. Procedure for elastic condi:>......

The strain and stress fields are given by

a2
2Gw., = -(1 -2 V)Pb +(Pb - d- (6)

2Ge8 = -(i-2V)Pb -(PbP- a2  (6)
rz

Cyr = P P -az (5)

-C a (5)

r0 = Pb-(b rP);

UZ=-2VPb (5)

TUNNEL CLOSURE

D 2G ~2b1)
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Table 6. Procedure for Case I yielding--single plastic zone.

For l ow values Of Pb ( Pb ! 2[(N+l)Pa+cFu]). use the procedure for elastic
conditions of Table 5. Otherwise:

Compute R

()-_ 2 .(N -)pb +( (34)
a N+1 (Nl)Pa+Oyu

then a()

Plastic Zone a! r ! R

Gr~[Pa + a](r)'+ cr, (14)

2F(p) =[-(N + (r>Mll V(Y (6

2 GEe(P = -(1 - V)-N[(N -1)paujR"'()* r + -Il (30')0 M~t + Na r R

2GF-e = 2GE~e) (P

2GEr = [1 - (N + 1)vla, + va, - M2GE(PI (25,17)

0()= Na, - (U (7')

y,= V(Q.r + 0) (24)

Pa is required in the elastic zone. Therefore,

a, (R) = 2 Pb - (Y (33)
N+1

p: (R
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Table 6. Procedure for Case I yielding--single plastic zone

(Concluded).

Elastic Zone r_>R

2GEr =-(1-2v)Pb+(Pb-P) R (6')

r R2

2 Gee = -( - 2 v)pb -(Pb - P:) 7  (6')

R2 

T
0, = -Pb + (Pb -P) (5')

e = Pb - (Pb rP (5')

Z = -2 Pb (5)

TUNNEL CLOSURE

= -e(a) [{N - (N + 1)v}p, -(1- v)o,]
D 2G

+ [-v)-----{(N -1)p. + cr-- a(63'
2G M+N a -,a R)J
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Table 7. Procedure for Case I yielding--three plastic zones.

For low values of Pb (Pb-< [(N+1)p,+cj), use the procedure for elastic

conditions of Table 5. Next, determine whether there will be one plastic zone

or three. If Pb< 1( I] only a single plastic zone will form and the
2[1 -(N + 1)v]

procedure of Table 6 may be used. Otherwise:

Compute required constants

p 2 = MN (45)
MN+1-(M+ N)v

2(N_-M)v +2 [(N-M)2v2  1 (49)

2MN (MN)2  +

p2 (M-N)v +p2 (M-N) 2v2  (49)
2MN(MN) 2  (4

A (1 -2v) (Y (49)
1-2Nv

C 2(N -1)v [o, -(-2Nv)pbl (52)CI-1-2Nv

bi :M(N + 1)v + [MN + 1 -(M + N)vlyl (53)

b2 = M(N +l1)v - [MN + 1 - (M + N)V'Y 2  (53)

= 2 NMN + 1 -(M + 1)(N + 1)v][ou -(I -2Nv)pb] (53)
1-2Nv

Bi c2 -b 2cl B = b1cl -cZ  (53.1)

bi-b2  bi- b2

b3 = M(N +1)v -11+ [MN +1 -(2M + N + 1)vly 1  (55)

b4 = M[(N+1)v -11-IMN+i -(2M+N +i)v]7 2  (55)

c3 =IMN +1-(M +1)(N +1)vi (55)
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Table 7. Procedure for Case I yielding--three plastic zones
(Continued).

Now determine radii R, R, R

1

a 1-(N + 1)v}{(N -1)p. + a° (3

Then

The ratio R may be determined by iteration. Begin by assuming R = 0.9 and
R R

solve

1

C31-2v c,-bART-
1-2Nv R(56')

b4B2

Compute - from
a

-bBR-b 2B 2 (R +bl(l - 2 v)

(R - kRJ * 3 (N -1N(1-2v) (62)
C 3( P -+ -

then a) and R =

Compute

A B, A2 __ (63)

49



Table 7. Procedure for Case I yielding--three plastic zones
(Continued).

Pa is required in the elastic zone. Therefore in the outer plastic zone,

compute strains and stresses at r = R (the outer boundary of the zone)

2Ge (R) = y1A1RYI ' -yA 2Rf'' I + A (47')

2GEe(R) A R '1 + A2R' 1' + A (48')

ar (R) = -[{MN + 1 - (M + N)v}2GE7 (R) + M(N + 1)v2GEe(R) + (M -1)va,] (42')
C3

p:= (R)

Inner plastic zone strains depend on circumferential strains at rR and r=R

so those are computed next.

2Gce(R) AR7'' + A2R -'Yl- + A (48')

2GE (2H_ + N)( -)( + N +1RN1)p. +u [r1
2Ge() 2~ (R + N(N 1)(1 + v)y~ ai

(N -1)(M+1)1 +v)LLR j

The plastic component of Eo(R) is also required in the inner plastic zone. It

may be determined as follows

5'(o) yo(u (35)
1) -(N +1)v

2GcE)(R) fN -(N + 1)vloa,( -(1 -v)oo (26')

2GE(') = 2Gee(R) 2GE('(R) (19')

With the information developed as described above, stresses and strains at any

point may be readily determined. For a point at any radius r > a, compare r

to R, R, and R to determine its location; then proceed to use the appropri-

ate formulas below.
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Table 7. Procedure for Case I yielding--three plastic zones
(Continued).

Inner Plastic Zone (a_<r_<R)

[. . ](rrf + c (14)
( "N- =-P*-Ja) N-1

O = NOCr -(Y (7')

', = V((,. + (O) (24)

2i' = [ -(N + 1)v]a(Y + vo,, (25)

2GE(") = [N -(N + 1)v]o - (1 -v)a (26)

GE= 2Ge?)(R). - (Nl-v)[(N -1)p. +~ (J[J r)N11 (76)

2Gee = 2Ge ") + 2Ge p)  (191)
2G=(p) = -M2GeO )  (16')

2Ge,. = 2Gc(") + 2Gc(P)  (19')

Middle Plastic Zone (Rr __R)

2G = 2G~e(-R) j+ MN+2-2(M+N+l)v M-{ *N 1]( r)N-1
= + (M+N)(N -1)(1 + v[(N-1)p. -1 a

(M+2)(1-2v)GU K_(74
(N -1)(M +1)(1 +v) [) r

S= -M2G + N+2-2(M + N +1)v M-2v
1 +-v 1+v

r, = _ [p, u ( + Y1 (14)

0  = N ,. - , (7')
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Table 7. Procedure for Case I yielding--three plastic zones
(Continued).

Outer Plastic Zone (R_<r_<R)

2GEv = yIAirII- -y2A2rYzI + A (47)

2Ge* = Ar 7 ' ' + A2rY ' + A (48)

Crr = - 1[{MN + -(M + N)v}2Ge, + M(N + I)v2G, + (M -1)vcy, ] (42')

1G= -[N(M + l)v2GEr + MN2Ge_, - 1 - (M + 1)v}o,] (43')
c3

1 (. (1')

Elastic Zone (r>_R)

, R2

2GEr = -(1 -2V)Pb + (Pb -PR)-T (6)

.R2

2GE9 = -(1 -2V)Pb - (Pb -P)- (6')

Q=-Pb + (Pb -P:) r 2 (5)

= -Pb - (Pb -P) R2  (5')
r2

= 2VPb (5)
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Table 7. Procedure for Case I yielding--three plastic zones.
(Concluded).

TUNNEL CLOSURE

Compute constants J32, Y Y2, A, bl, b2, b3, b4, c1, c2, c3, B1. and B2 as

shown at the beginning of the table. Then compute R, , and R, followed by

A, and A2.

Now compute tangential strain components as follows.

2Ge (R) = AR' + A2R- ,'-1 + A (48)

2Ge.(A)= 2GFe(K)- MN+2-2(M;N-l)v [(N -1)p +{(.}_R (M +N)(N -1)(1 + v) -Rj a

(M-+2- 2 )Ly, -  (74')

Z~de>(R)[N - (N + 1)v]
2G ( =[ -(N +)vF, - (1 -v)a,, (26')1 -(N +1)v

2Ge(P)(R) 2GE (R) - 2GE(e'(R) (19')

2GF-(E*(a) = - [N -(N +1)vJp, -(1- v)ar (26')

2G()(a) =2G )( )R ( +1)(1 -- Y [(N -1)p. + a [ (,6,

Then

AD 1(1)

D =,E,(a) -- [2G,¢ (a) + 2GE(P)(a)] (19')
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Table 8. Procedure for Case II yielding.

For low values of Pb (Pb!<P u ), use the procedure for elastic
2(1-Nv)

conditions of Table 5.

Determination of the number of plastic zones is not as straight forward

as in Case I yielding because calculation of P' from Equation 89 is required.

It is recommended that all of the following constants be computed first since

most of them are required in the calculation of Pb.

S MN (45)
MN+1 -(M+ N)v

p2 (N-M)v 22 (N-M) zv 2  1 (49)2MN (MN) 2  + Y

2 (M-N)v W (M N)2 V2  1
2MN - N (49)

A- (1-2v) (49)
1-2Nv

c 2(N-1)v [1 _(l_2Nv)p] (52)1-2Nv

b, = M(N +1)v + [MN +1-(M + N)vY 1  (53)

b2 = M(N +1)v -[MN +1 -(M + N)vy 2  (53)

b3 = M[(N + 1)v -11 + [MN + 1 - (2M + N + 1)v]y1  (55)

b4 = M[(N +1)v -1] -[MN +1 -(2M + N + 1)v]y 2  (55)

c 3 = [MN +1 -(M +1)(N +1)v] (55)

= 2 1 [MN+1-(M+1)(N+l)v][o, -(1-2Nv)pb] (53)
1 -2Nv

B, = c 2 -b~c B2 = bc 1 -c 2  (53.1)
bi - b2  bi -b 2
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Table 8. Procedure for Case II yielding.
(Continued).

B3B (85')

B4 = B2(86.)
Cl

Now determi ne whether one or two plastic zones will form by computing the
ratio aIR' and then Pb'

I

a =[ [B 3 {2var,-(1-2Nv)palb, t{G, (1-2Nv)P~1{M+(M1)Vy 11 1 y (88
L-f B4 {2va, -(1 -2Nv)p.1b, -{a(Y -(1 -2Nv)Pa}{t4-(M +1)vy2j1 88

and

p 1-2N - 3(-2Nv Pa \z(89)

2(N )vlblB3 R1 b2B4(j R'

If Pb :5Pb. use the single-plastic-zone procedure immediately below.

Otherwise, proceed directly to the section below entitled TWO PLASTIC ZONES.

SINGLE PLASTIC ZONE

The ratio aIR may be determined by iteration. Begin by assuming aIR=

0.9 and solve

[R -'N b2B2 (78')

Then R = a/(a/R). Compute constants

A BA=B2 (63)
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Table 8. Procedure for Case II yielding
(Continued).

With the information developed as described above, stresses and strains at any

point may be readily determined. For a point at any radius r > a. compare r

to R to determine its location: then proceed to use the appropriate

formulas below.

Plastic Zone (a_5r _<R)

2G,. = y1Alr *l' -7yA 2r "y' +A (47)

2Gee = A1rY-1 + A2r -, - + A (48)

or = 1-[{MN + 1 - (M + N)v}2GE, + M(N + 1)v2Gce + (M -1)voy] (42')

1G= LNM+ 1)v2G-, + MN2G~E - {1 - (M + 1)vlaF 1 (43')
c3

, (1')

N

Elastic Zone (r__R)

First find Pa

y, (R) = -2(1 - Nv)pb + o, (50)

p: = -a, (R)

2GF- = -(1- 2v)pb + (Pb -P.R- (6')

2GEe = -(I - 2V)Pb (Pb - P) (6')
r 2

y. = -+ (Pb -P ) r (5')

.Rz

Ge = -Pb b -P)-i (5')

a, = -2vpb (5)
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Table 8. Procedure for Case II yielding
(Continued).

The tunnel closure equation is provided at the end of this table.

TWO PLASTIC ZONES

Determine the radii R and R. The ratio R/R may be determined by iteration.

Begin by assuming R/R = 0.9 and solve

1-2v K -

R 1-2=v b (R)T1  (56')
R b4B2

compute R/a from

N 2 (K\ NO ~- 2v)

(aJ =3P Y N 1(- v (62')iN-1

Then

I

and R= R

i~a) 1] R)

Compute constants

, B, A2 R,.2(63)

Pa is required in the elastic zone. Therefore in the outer plastic zone,

compute strains and stresses at r = R (the outer boundary of the zone)

2Gc,(R) = yIRY
1 R' - - ,2A2R ' l 1 + A (47')

2GEq(R) = AIR 'I + A2R"Y,' + A (48')
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Table 8. Procedure for Case II yielding
(Continued).

a, (R) = [MN + 1 -(M + N)v}2GE, (R) + M(N + 1)v2Ge(R) + (M -1)vo. ] (42')
C3

P= = (R)

Inner Plastic Zone (r_R)

2GEe(R) = AiR' ' + A2R' ' ' + A (48')
(M * N) (N -1) pa + (I ] .rl I1( )

2G+e = 2Gee(R).(.R_ MN+2-2(M+N+l)v -1)l"(K -1M (M + N)(N -1)(1 + v) R +

(M + 2)(1 -2v)O. KC (74)(N-0+1 ) 74

2G,= -M2GEe + M+2-2(MN1)v( - 2 , (75)
l+v l +v

= _ + , ] c (14)

c0  = N , -a . (7')

(Yz = (Yr

Outer Plastic Zone (R__r_<R)

2Ge., =y1 .A r
y' - -7y2 r ' -z +A (47)

2Ge = A1r y-1 + A~r -Y2-I + A (48)

[{MN + - (M + N)v}2GEr + M(N + 1)v2Ge.e+ (M -)vcy ] (42')
C3

S= 1-[N(M + 1)v2GEr + MN2GEe - {i - (M + 1)vIa. 1 (43')

1 ('

G ((oG +o) Y
N
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Table 8. Procedure for Case II yielding
(Continued).

Elastic Zone (r >R)

2GEr = -(1-2v)Pb +(Pb -P:)-T (6')

2GF- = -(1 -2v)Pb - (Pb R2  (6')

oYr = -pb + (Pb -P) (r')

= -P -(Pb - (5)

Fz = -2VPb (5)

TUNNEL CLOSURE

Compute constants p 2, y1 , 72, A, bl, b2, b3, b4, cI, c2 , c3, B1, B2, B3,

and B4 as shown at the beginning of the table. Equations 88 and 89 can then

be used to determine if one plastic zone or two will form.

For the single-plastic-zone case, a/R is computed from Equation 78' and

constants A1 and A2 are found from Equations 63. Tunnel closure can then be

determined from

AD = -e(a) = -- (Alay1 + Aza'- + A) (48')

When two plastic zones form, R/R and R/a are computed from Equations

56' and 62', respectively. Then

a and R- ( R)
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Table 8. Procedure for Case II yielding
( Concluded ).

Constants A, and A2 can then be computed from Equations 63. Then

-BR) 1 [AIRY'-' + A2R-*fl +A (48')

8)2G A

and

ADMN +2-2(M44 N +1)v [(W+P f~wN
D (a) = e() - 2G(M + N)(N -1)(1.+ v) [(N l1ap. 1a

+ (M + 2)(1 - 2v)aYU FR~i (74-)
2G(N -1)(M +1)(1 + v)[(a)
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APPENDIX A

FLORENCE AND SCHWER CASE I SOLUTION

The following paper (Reference 3) was published in the International
Journal for Numerical and Analytical Methods in Geomechanics by John Wiley &
Sons, Ltd. With their permission, it is reproduced here in its entirety.
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INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS. VOL 2. 367-379 (1975)

AXISYMMETRIC COMPRESSION OF A MOHR-
COULOMB MEDIUM AROUND A CIRCULAR HOLE

A. L. FLORENCE AND L. E. SCHWER

Poulter Laboratory, SRI International, Menlo Park, California 94025, US.A.

SUMMARY

An analytical solution is presented for the stress and strain fields in a Mohr-Coulomb material in plane
strain around a circular hole when it is compressed by an axisymmetric far-field pressure. It is shown that
several solutions arise involving one to three plastic zones depending on the values of Poisson's ratio and
the friction angle. The solution chosen for presentation was obtained and used to validate the functioning
of the Mohr-Coulomb yield condition that was added to the NONSAP finite element code. Stress and
strain field comparisons are made.

INTRODUCTION

The purpose of this paper is to provide an analytical solution of a rock mechanics problem that
can be used to validate the predictions of finite element codes. The problem, which is of
interest in itself, is the determination of the stress and strain fields surrounding a tunnel in a
Mohr-Coulomb rock subjected far from the tunnel to an axisymmetric pressure. Plane strain
conditions prevail and an internal pressure is allowed to develop at the hole boundary. Such a
pressure may be considered as arising from a metal liner at yield or from a crushable
back-packing material between the liner and the rock. To simplify the analysis and to provide
a defined loading history this internal pressure is assumed to be equal to the far-field pressure
as the far-field pressure is increased (loading) until the internal pressure reaches its final value,
whereupon it remains constant with subsequent loading.

The rock behaviour is elastic-perfectly plastic, obeying the Mohr-Coulomb yield condition
and associated flow rule; hence, dilation is included. It will be seen that several cases can arise
that depend on the relative magnitudes of the principal stresses, and these relative magnitudes
depend on the values of Poisson's ratio and the friction angle. One of these cases is treated
here, chosen to involve two adjacent faces and the common edge of the yield pyramid, instead
of the possible case involving only one face, to provide a more severe test for the code. Three
plastic zones arise, shown in Figure 1, that correspond to the two faces and common edge. In
this work the finite element code employed is NONSAP' to which the Mohr-Coulomb yield
condition presented in Reference 2 has been added. Comparison of analytical and code results
is presented.

The motivation for the code validation analysis was to provide support for the experimental
and theoretical investigations of Kennedy and Lindberg3 and Senseny and Lindberg4 into the
response of buried cylindrical structures to quasi-static loading.

Initial loading-outer elastic zone

Let p. be the pressure acting on the hole boundary of radius a and let Pb be the pressure at
infinity (far-field). If p. = Pb on initial loading, equilibrium requires that the radial and circum-
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\ / Pb >  b

ELASTIC
\ /

" PLASTIC I

/ \

Figure 1. Outer elastic and three plastic zones

ferential stress components are equal, that is, or= oe =-Pb. If the material is elastic and in a
plane strain condition, the axial stress is o'. =- 2 VPb throughout, where z' is Poisson's ratio
(0 < v' <). Hence, we have the relationship o', o', < o'=. With increased loading, yielding will
occur if

i= l. - Nc-z + O*= = 0 (1)

where

N- <=02 (2)
1 - sin

and o'u >0 the unconfirmed crush strength ea being the friction angle. Substitution of the stress
components in yield condition (1) gives

Pf = Pb = 1 (3)

1 -inV

For Pb > 0, the material will not yield if 2NP > 1. However, if 2Nv < 1 the material will yield
throughout when equation (3) is satisfied. We shall therefore consider design values of internal
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pressure p. obeying the inequality

P.< when 2Nv< 1 (4)
1 -2Nv

and for P., so far, unrestricted when 2Nv > 1.
Once the design internal pressure has been reached it is held constant and the far-field

pressure is increased. While the material remains elastic the stress and strain fields about a
hole of radius r = a are

a2 a2
a,= Pb+(Pb-P.)-T, 0".=-Pb-(Pb-P.)T, 0.z = 2 VPb (5)

rr

a2 a 2

2Gr,=-(1- 2 ,)Pb+(Pb P,)-, 2Geo= -(1 - 2
V)Pb-(Pb-P,)-Y, E,= 0 (6)r r

where, for our loading history, P.<Pb. In (5), G is the shear modulus. We see immediately
from (5) that a, <a, and o- <o, throughout. Also, a0(O)<a.z, but at the hole the inequalities
are conditional, that is, ao,(a)>az if p.< 2VPb and az<0,r(a) if p.< 2vpb. It can readily be
shown that with increasing loading, yielding occurs first at the hole. We now examine the effect
these inequalities have on the initial yielding at the hole.

Initial yielding

Let yielding occur at r = a when Pb = Pib. If p. < 2 fib when yielding occurs, then 0-" < 0z < a,
at r = a and the yield condition is

f = a. - Na, + a = 0 (7)

Substitution of 0,#(a)= - 2fib+p. and 0,(a) = -p., from (5), in equation (7) leads to the yield
pressure

fb = 1[N + I)p. + a. (8)

Satisfaction of the inequality p. < 2Vfib now requires

< Pu (N+1)v < 1 (9)1 - (N+ 1) ,

but places no restriction on positive p. when (N + 1)v > 1.
If 2 Ob < P. < tb, whe- yielding occurs, then COe < Or, < ar, at r = a and the yield condition is

equation (1). Sutstitution of a,(a) = -2,pb+p. and a-,(a)= - 2VPb in equation (1) leads to the
yield pressure

Pa + a-u
Pb- &- Nv< 1 (10)

2(1 -Nv)

Yield condition (1) does not govern yielding if Nv> 1. In this case, Pb increases until
p. < 2 Pb SO that yielding is governed by condition (7) and Pb is given by formula (8); because
(N+ I)v> 1, no restriction is placed on p.. For Nv<(N+ I)v< 1. inequality 2 Pfb<P.<fib

66



370 A. L. FLORENCE AND L. E. SCHWER

and the yield pressure (10) restrict pa to the ranges

POu ou )
< Pa <0<N<I-(N+ l)v ,< N 0<N'< t 11

1<OPu < (N+l)v<1 (12)
1 -(N + l)v<P 2

The above results are collected in Table I.

Table I. Initial yielding conditions

Property relations Internal pressure Yield pressure Stress order Yielding case

NY <(N +I)v <I Pa < Var. Pb = I N +l)pa +oa.] ae <o,. < a, (1) pa <2 V~b
I -(N + 1)v

1N <<(N +I)vJ p.>0

k<Nv<(N+I)v<l p,> Va. Pb 
= po+a. a0<o*'<o'. (2) 2 Vb<P.<Pb1-(N+) 20 - NO

0<Nv<1 Va. <p.I "(N + l)v

1-2Nv

We present here the analysis of Case 1 in Table I for Pb >Pb, where 45b is given by (8). In
order to avoid an excessively long exposition, Case 2 of Table I will be presented in a
forthcoming paper.

Initial growth of plastic zone

As the far-field pressure is increased beyond the initial yield value fib, an annular plastic
zone of outer radius r = R expands from the hole of radius r = a. within this zone yielding is
governed by condition (7). the equation of equilibrium throughout the material is

do' ,-r , (13)
dr

After eliminating cre from (13) by means of yield condition (7) it is found that the solution of
the resulting equation that satisfies o-,(a)= -p. is

, -_p, -N - ](r) +N-+ 1 a <r < R (14)

The flow rule associated with yield condition (7) is

"A,' -N Af=o (15)
a  - A  af= CIO,6
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where the dot may be interpreted as differentiation with respect to Pb. From flow rule (15) it
follows that

[e +NEr P) ]=0, Er+NE# = g(r), e.) = g2(r) (16)

which means that the strain expressions in (16) evaluated at a fixed radius r remain constant as
loading proceeds. Initially, when the elastic.-plastic radius R is at this radius r, the plastic
strains are zero so that gl(r)= 0 and g 2(r) = 0. Hence,

E£ +NE P) =0, EX 0 (17)

Strain increments are taken as the sum of the elastic and plastic strain increments, that is,
ir~i ) -e(P) -(C) + (), (e) + (18)

Now e,-(ic)+e(P))=g(r), and when R = r we have E,=r (e) and E() =0 so that g(r)=0.

Using the same argument for the other two strain components leads to

Er-E(+), W W+e?, W+ ((9

Plane strain requires ez = 0 and the flow rule leads to -(
P) 0, as shown in (17). Thus (19) for

the sum of the strains completes the deduction that
(e) (P)

Ez=0, E =0, e =0 (20)

Hooke's law relating the elastic strains to the stresses is

Ec') =or,- v(oe + r.) (21)

E (e ) =as - v(0-. + o,) (22)

Eez =a. -V(0,+,) (23)
(e)

where E is Young's modulus. The result E, = 0 substituted in (23) gives

0 = V (o,+ cr,) (24)

Elimination of or and or, from (21) and (22) by usinr yield condition (7) and result (24) leads
to

2G, r =[1-(N+1)v]oro,+c, (25)

2GE( 1) = [N - (N + 1)vio',- (1 - v)o' (26)

where G is the shear modulus and or is given by (14).
The strains are related to the radial displacement u by

du U (27)
E,'= Tr E* = - (dr r

and elimination of u leads to the compatibility equation

r E+ - Er =0 (28)

By using in turn (19) for decomposing the strains, (17) to eliminate (rP), (25) and (26) to
eliminate the elastic strains and (14) to eliminate or, equation (28) becomes

d E(P (P) = 1 - V.r) N -

d- P- (N +)+ P) 2G +N)[(X- )p.+o,-] (29)
dr 20 (a6
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The solution of equation (29) satisfying e 0 (R)- 0 is

-1- P N + 1 I. (30
Es 2G N \a r/\R)/30

and EsP is given by (17). The remaining unknown is the radius R. Using R and p instead of a
and p. in (5) gives

o,(R)= -p, ae(R)= 2 Pb + P, cr(R)= - 2 VPb (31)

If yield condition (7) still holds at r = R it follows that

Pb = 2'[N + l)p + a.] (32)

o-,(R)= - (33)

Substituting r = R in formula (14) and equating to formula (33) provides continuity of the

radial stress and the result

(R)N 2 (N-1)pb+ a. (34)

N+I (N-1).+o'u

The above description of yielding applies with continued loading as long as o', < cr, in the
plastic zone. From (24) and (7),

0'r- o'Z = [I - (N+ 1)r', + Vo.

so that
(1) o', <oa, when (N +l)v>l1

(2) o-' <o'r when (N+ 1)v <I if o-,<- a
I -(N+ 1)v

In the first case, when (N + 1)v > 1, the solution is complete; this case has been treated in the
literature. In the second case, when (N+ 1)v. < 1, we first observe that in the plastic zone
min o, = o-,(R) so that as loading proceeds the elastic-plastic radius R attains a value where

o'( o,/)= Voa. (35)
1 -(N+ 1)v

and

1 - (N + 1)v

The magnitude of the loading when R = is fb given by (31) and (35), that is,

Pb= 2[1 -(N + 1)v] (37)

and the radius of the elastic-plastic interface, from (34) and (37), is determined by

(RN-  (1-2O'a(
a) (I -(N+ 1)vJ[(N- l)p.+ (7-J (38)
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Relationship (38) for A is independent of ,b as is the stress field, and consequently both
remain constant during further loading.

We now show that with further loading three plastic zones appear, as shown in Figure 1.

Increased loading-outer plastic zone

It is postulated that with increased loading (Pb > b) plastic yielding outside the fixed radius
and adjacent to the outer infinite elastic zone occupies an annular region A < r < R in which

o# <o,,<o,, as shown in Figure 1. The yield condition in this zone is therefore equation (1)
and the associated flow rule is

i * i (P)) - (P) -Nk(39

which, for the same reasoning that led from flow rule (15) to the plastic strain relations (17),
provides the strain relations

(p)- (p) (P) _

e, +Nee =0, Er-0 (40)

Relations (19), the plane strain condition Ez = 0 and relations (40) lead to the strains

( =ECrC , ez=O (41)

Hooke's law (21)-(23), expressions (41) and yield condition (1) give

(N 2+1(N+1) 2vror,=(N 2 + I-2N)2Ge,+N(N+ l)2Gee+(N-1)vcru (42)

[N 2 +1 - (N + 1) 2
p]o', = N(N + 1)v2Ge, + N 22GE, - [1 - (N + 1)]o, (43)

Substitution of the stresses (42) and (43) in the equation of equilibrium (13) and use of the
strain-displacement relations (27) lead to the displacement equation

r2 d2 u du 2 _ a 2 (1 - 2v)o-(
dr 2 dr N 2G

where

a 2 = N2 /(N 2 + 1 - 2Nv) (45)

The displacement solutions of (44) and the corresponding strains are

2Gu = A r' + A 2r-* + Ar (46)
2Ge, = aA r* - t - aA 2r - *- + A (47)

2Ge, = A r * - I + A 2r
- ' - + A (48)

where

A (-2v)o (49)
1 - 2Nv

If the elastic zone stresses evaluated at r = R are substituted in yield condition (1) we find
that

,(R) = -2(1 - NV)pb + 0 u (50)

Hence, the circumferential strain at r = R is given by

2Ge(R) = -2(N- I)vpb- C (51)
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The radial stress and circumferential strain at r = R from the plastic zone are determined by
(42), (47) and (48). Thus, to provide continuity of radial stress and displacement (or e) at

r = R we require, according to (50) and (51),

AR - +A2R-- = 2N )[au -(1 - 2Nv)pb] (52)
1 -2N1'

[N+(N+ 1)v]AR-' - [N-(N + 1)]A 2R-"-1

2(1 - Nv)[NN2 + 1 -(N+ 1)2 v] (53)
N(1 - 2Nv)

It is reasonable to postulate that at the inner radius A9 of this plastic zone we have
o.,(/) = oa,(R) so that the yield condition may be written as

Nar,(Rq)- o'. (R) = cr,, (54)

where the stresses are given by (42) and (43). Substitution of (42) and (43) in (54) and use of
strain solutions (47) and (48) with r = R lead to the equation

(N- 1)[N+ (V + 1)vA fi'- (+ )[N_ (N + 1)v]A2_z,_l

[N 2 + 1 - (N + 1)v](1 - 2v)o. (55)
a (1 -2Nv)

After solving (52) and (53) for AI and A 2 , and substituting in (55) we arrive at the equation

(N_ 1)[N+ (N + 1)v][ N- (N + 1)v}(N - 1)Nv +{N 2 + 1 -(N + 1)2V}(1 -NV)](---)

=(N+ 1-2N_)(N + 1 -(+v]ro. ([{+(N+ 1)}N )v{ 2 + I _-(NV+ )IV)(, -NV')( a-)

(N2+ N,[ +1-( ) (1 - 2v)or (56)
o- 2Nv)P

Equation (56) determines the radius ratio A1R. Determination of A requires a description of
the state in the plastic zone A < r <A.

Increased loading-middle plastic zone

It is postulated that with increased loading (pb>i b0r,=Cr throughout the plastic zone
S< r <A9 shown in Figure 1, so that yielding is governed by

f = os - No, + o. = 0 (57)

f2 = oe - No, + o' = 0 (58)

Equation (57) allows the elimination of o* from the equilibrium equation (13) to leave a
differential equation with the solution

a,= 0-,(A).(R) +[1() ]N 1.N (59)
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which, after substituting A and o-,(R) from (38) and (35), becomes

P. + [I- P-I +N0' (60)cr'- NP - I-a) N -I

Because formulae (60) and (14) are the same, the radial stress a, is given by the same formula
throughout the combined inner and middle zones, a < r < R. Formula (60) gives the value
,,(,R), so providing continuity of this stress at the interface r = , leads to the equation

(N + 1-v[(N+ 1)+N- )Nv+{N -(N+ + N)]( 

+ [ - (N + 1)]N{ + (N + 1v(N - )Nv'-{N 2 +1I -(N + 1)2,'}(1 _NXv)](

(N 2 + 1 - 2Nv)[N 2+ 1 -(N +1v[( - 2v)ax- (l- 2NP)X(N- I)Pa+ - )N- 1

(61)

The radius ratio RIR is determined by (56), so equation (61) determines the radius FR and
hence R is also determined. Now that R is known, the constants A, and A 2 (in terms of the
loading parameter Pb) are the determinable solutions of (52) and (53). Explicitly,

A, =R'-' N_(N+ 1)v (N- 1)Nv+{N 2 + 1 -(N+ )v}(1-NJ N(1-2Nv)
Ha I N'1-21V)

(62)

A 2 =R' I 1 (Nr1 ~ v (-1'N'N 2 + 1 -(N + 1l2I( - Nv) afao.J2(1 - 2Nv)PbI
ha (N I N+-,,- (1 - 2Nv)

(63)

and by (46), (47) and (48) the displacements and strains in the outer plastic zone are known.
Finally, by (42), (43) and (1) the stresses in the outer plastic zone are known.

The flow rule associated with the yield condition equations (57) and (58) is
.. Aar,+ of 2

ir = A , -+A 2 =-NA, (64)

80f a/2

ip) =A 1 + A2-=AI +A2  (65)
8re af-8

-A--+A 2 -=-NA 2  (66)
ao' aoZ

so that
[(P' a) W (Ptt)" =0 (P"N) ,  (P,)

-r6 e =g(r) (67)
(-(P) -~)(P)

Let the plastic stra:ns be i. . eZ at r when the load Pb has placed the plastic-plastic
inte~face of the middle and outer zones at r. Then, when 9 = r,

g ,(r) = + N5 6p + 4T (68)

But in the outer plastic zone the plastic strain relations (40) hold so (68) reduces to g(r) = 0.
Hence (67) becomes

(p)- Wr(p - (P)

E_ -NEO +Et =0 (69)
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The plane strain condition is E, = + ez ' = 0 which, when combined with (69) gives

E, = -NEs + Ne ( + Ere) + E-(Z71(70)

Stress relationships (57) and -, = az reduces Hooke's law (21), (22) and (23), to

E(r) Ee() =[1-(N+l)v]or,+va, (71)

EE = (N - 2 v)Or - u (72)

where o-, is given by (60). Substitution of the elastic strains (71) and (72) in the radial strain
expression (70) followed by substitution of the resulting E, in the compatability equation (28)
leads to the equation

)2[(N N (N+)12I'

2G d I 2 N +2-2(2N+1)v[ -r )P.+°a-T (N +2)(1-2v)o Nr 73)
dr (N - 1)(I + v) ()a (N-1)(+)

Integrating (73) from r to gives

2GEs = 2E 9 ). +N 2 +2 2(2N+ l)v[(N - +N0r)

(N - NXN + 1)(1 + V 1)

where 2Gee(/i) is determined by (48). From (70), (71) and (72) the radial strain is determined
by

N2 + 2- 2(2N + l)v N - 2v
2Ge, =-2Ge.N ~1 ' 1 ou (75)

Increased loading-inner plastic zone

During the increase in loading (Pb > fb) the stress field in the inner plastic zone, a < r <
remains constant. Formula (14) gives a,. Formulae for a@ and o-, then follow from the yield

(P)condition (7) and the result (24). The differential equation (29) for the plastic strain e " still
holds with increased loading but now we integrate from r to instead to r to R. Instead of (30)
we obtain

2Gc?~~ = 2Ge(. )(R)( -) (N + 1)( - v)[ N 1 P + ]( [( ) -( ) ]

(76)

The other piastic strain components are still given by (17). The elastic strain components
remain the same because the stress field is unchanged, so the elastic strains are given by (20),
(25) and (26). In (76), e "(/) is found by setting r = R in (74) to give es(R), r = A in (72) to
give e 1(R) and applying strain summation (19); note that for (72) o',(]-) is given by (35).

Numerical example (Case 1, Table 1)

A numerical example is presented to illustrate a comparison between the stress and strain
fields obtained by the analysis and the NONSAP finite element code augmented by the
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Mohr-Coulomb yield condition. The data are

Poisson's ratio v = 1/5
Friction angle function N= 3(to = 30")
Unconfined crush strength ou, = 2000 lb/in2

Internal pressure p. = 500 lb/in2

We can load initially with P, = Pb until pa = 500 lb/in2 without yielding because 2Nv = 6/5 >
1; see condition (4). The chosen numerical values result in (N + 1)v = 4/5 < I and vo-,/[ 1 -
(N + 1)] = 2000 lb/in2 , so that inequalities (9) are satisfied. Hence pa < 2V1b and the initial
yield pressure is determined by formula (8), which gives fib = 2000 lb/in 2 (2 vfib = 800 lb/in2 ).
The value of the far-field loading when R = A, the radius of the elastic-piastic interface when
or,(R) = oz(R), is Pb = 5000 1b/in 2 according to formula (37); the stresses at r =R1 are ff,(/) =
cr,(R ) = -2000 lb/in 2 and or(R) = -8000 lb/in 2, accoiding to formulae (35) and (36). Formula
(34)gives R = V(2)a. Another result that can readily be calculated is the circumferential strain at
the hole when Pb = ib. According to formulae (26) and (30), 2GE(C ka) = -2700 lb/in 2 and
2Gt?.)(a)= -11,200 lb/in2 so that 2Ge.(a)= 13,900 lb/in 2. If, for simplicity, G = 106 lb/in2 .
E@(a) = 0.70 per cent when Pb =fib = 5000 lb/in2 , that is, the tunnel diameter has been reduced
by 0.70 per cent.

10 .0 I m , I i I I I I

9.0

8.0

7.0

_ 6.0

5.0
U,

.-'. 4.0

3.0

100

2.0 -

i.0 -- RA na ly sis _
F00RO • NONSAP

0 1
1.0 1.2 1.4 1.6 1.8 2.0 2.2 24 2.6 2.8 3.0 3.2 3.4

RADIUS RATIO - r/a

Figure 2 Comparison of analytical and NONSAP stress fields
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3.0 1 I

- Analysis

2.5 se.NONSAP

2.0

1.5

CL

1.0 - Er

I0.5

0

-0.5
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Figure 3. Comparison of analytical and NONSAP strain fields
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Figure 4. NONSAP axisymmetric finite element model
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For loading above p, transcendental equations (56) and (61 ) have to be solved to find a and
R before stress and strain formulae can be evaluated. However, in many cases the constant a
of formula (45) is approximately unity and rapid estimations can be made.

Figures 2 and 3 afford a comparison of the stress and strain fields for a far-field pressure of
Pb =6000 lb/in2 ; for the strain calculations the modulus of rigidity was taken as G =

106 lb/in2 . Figure 4 shows the finite element model used in the NONSAP calculations. It is
clear from the excellent agreement that for problems of this type the Mohr-Coulomb yield
condition was correctly integrated into the NONSAP finite element code.
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APPENDIX B

FLORENCE AND SCHWER CASE II SOLUTION

The following paper (Reference 4) was prepared under a DNA contract. It
is reproduced here in its entirety with the concurrence of the senior author.
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SUMMARY

An analytical solution is presented for the stress and strain fields

in a Mohr-Coulomb material in plane strain around a circular hole when it

is compressed by an axisymmetric far-field pressure. Several solutions

arise involving one to three plastic zones depending on the material

properties and the loading. A solution involving three plastic zones was

presented in reference 1. The solution presented here involves two

plastic zones. The solution was used to further validate the functioning

of the Mohr-Coulomb yield condition that was added to the NONSAP finite

element code. Stress and strain field comparisons are made.
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INTRODUCTION

The purpose of this paper is to provide an analytical solution of a rock

mechanics problem that can be used to validate the predictions of finite ele-

ment codes. The problem, which is of interest in itself, is the determination

of the stress and strain fields surrounding a tunnel in a Mohr-Coulomb rock

subjected far from the tunnel to an axisymmetric pressure. Plane strain con-

ditions prevail and an internal pressure is allowed to develop at the hole

boundary. Such a pressure may be considered as arising from a metal liner

at yield or from a crushable back-packing material between the liner and the

rock. To simplify the analysis and to provide a defined loading history

this internal pressure is assumed to be equal to the far-field pressure

as the far-field pressure is increased (loading) until the internal

pressure reaches its final value, whereupon it remains constant with.

subsequent loading.

The rock behavior is elastic-perfectly plastic obeying the Mohr-Coulomb

yield condition and associated flow rule; hence, dilatation is included. It

will be seen that several cases can arise that depend on the relative magni-

tudes of the principal stresses and these relative magnitudes depend on the

values of Poisson's ratio and the friction angle. One of these cases is

treated in reference 1. It involves two adjacent faces and the common

edge of the yield pyramid, and three corresponding plastic zones. The case

treated here involves one face and an edge, and two corresponding plastic

zones, as shown in Figure 1. In this work the finite-element code employed

is NONSAP2 to which the Mohr-Coulomb yield condition presented in reference 3

has been added. Comparisons are made of stress and strain fields obtained by

analysis and code.
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The motivation for the code validation analysis was to provide

support for the experimental and theoretical investigations of Lindberg

and Kennedy4 and Lindberg and Sensenys into the response of buried

cylindrical structures to quasi-static loading.

INITIAL LOADING. OUTER ELASTIC ZONE

Let pa be the pressure acting on the hole boundary of radius a and let

Pb be the pressure at infinity (far-field). If pa = Pb on initial Loading,

equilibrium requires that the radial and circumferential stress components

are equal, that is, ar a = - Pb" If the material is elastic and in a

plane strain condition, the axial stress is a. = -2vpb throughout, where

v is Poisson's ratio (0 < v < 1/2). Hence, we have the relationship

CF = a < z  With increased loading yielding will occur if
r z

f = a8 - Na + a = 0 (1)z u

where N = + si (2)
1 - sincp

and a > 0 is the unconfined crush strength, ( being the friction angle. Substi-
u

tution of the stress components in yield condition (1) gives

p=pu (3)
a Pb - Nv

For pb > 0, the material will not yield if 2Nv > i. However, if 2Nv < i the

material will yield throughout when Eq. (3) is satisfied. We shall there-

fore consider design values of internal pressure pa obeying the inequality

a
a < u when 2Nv < 1 (4)Pa I - 2Nv

and for pa, so far, unrestricted when 2Nv > 1.
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Once the design internal pressure has been reached it is held constant

and the far-field pressure is increased. While the material remains elastic

the stress and strain fields about a hole of radius r = a are

2 2
(Tr =-P Pb P a 2 b " Pa 2 az ! 2 Wb (5)

r r

2 2
2G r - (1 - 2 v)pb + (Pb - Pa - Gee - - (1 - 2.v)pb - (Pb " Pa)-2 C = 0 (6)

r r

where, for our loading history, pa < Pb" In (5), G is the shear modulus. We

see immediately from (5) that Ce < ar and a, < cr throughout. Also,r 9 z

a (=) < a , but at the hole the inequalities are conditional, that is,r "z

ar (a) < C0z if pa > 2Vpb and Oz < ( r (a) if pa < 2Vp b' It can readily be

shown that with increasing loading yielding occurs first at the hole.

We now examine the effect these inequalities have on the initial yielding

at the hole.

INITIAL YIELDING

Let yielding occur at r = a when Pb = Pb" If Pa < 2VPb when yielding

occurs, then ae < a0 < a0 at r a and the yield condition isz r

f a No + a = 0 (7)

Substitution of a09(a) = -2 Pb + Pa and a r(a) = - Pa' from (5), in Eq. (7)

leads to the yield pressure

Pb + 1 )pa + ]  (8)

Satisfaction of the inequality pa < 2vpb now requires

ja

- ( (N + 1)v < l (9)Pa 1 - (N + 1)v

but places no restriction on positive pa when (N + 1)v > 1
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if b < P b when yielding occurs, then a, < a < a at r - a and

the yield condition is Eq. (1). Substitution of ae(a) = -2pb + pa and

SZ(a) = -2 pb in Eq. (1) leads to the yield pressure

p-+u
-= a u Nv <1 (0

Pb 2(1 - N) (0)

Yield condition (1) does not govern yielding if Nv > 1. In this case, Pb in-

creases until pa < 2VPb so that yielding is governed by condition (7) and Pb

is given by formula (8); because (N + l)v > 1, no restriction is placed on pa'

For Nv < (N + l)v < 1, inequality 2 Wb < Pa < Pb and the yield pressure (10)

restrict pa to the ranges

u < p< u 01<N <
I - (N + )v a 1- 2Nv 2 (1)

va
u

1 - (N + P)v < a 2 < Nv < (N + 1)v < 1 (12)

The analysis of case 1 in Table 1 is contained in reference 1. Here,

we present the analysis of case 2 for Pb < Pb' where pb is given by (10).

INITIAL GROWTH OF PLASTIC ZONE

As the far-field pressure is increased beyond the initial yield value

Pb an annular plastic zone of outer radius r = R expands from the hole of

radius r = a. Within this zone yielding is governed by condition (1)

and the associated flow rule

.=X-=. E - =X-=-NX (13)
r ;r aec z

where the dots may be interpreted as differentiation with respect to the

loading pb" From flow rule (13) it follows that
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NE p ) + g(P) . 9 (r) E( p ) . g (r) (14)a z I 2

which means that the strain expressions in (14) evaluated at a fixed radius r

remain constant as loading proceeds. Initially, when the elastic-plastic

radius R is at this radius r, the plastic strains are zero, so that

g (r) - 0 and g (r) = 0. Hence the strain expressions in (14) become

Ne P) + C(P) . = 0 (15)o zr

Strain increments are taken as the sum of the elastic and plastic

strain increments, that is,

= + C ( e) +6 + (p)
r r r z z z (16)

Now E - (E(e ) + (p) = g(r), and when R r we have r = E(e) and
r r r r

E ( p ) - 0, so that g(r) 0. Using the same argument for the other twor

strain components leads to

((e) + (p) C (e) +(p) .(e) + (p) (17)
r r r 0 + z z z

Plane strain requires c z 0, so (15) and (17) give the plastic and totalz

strains as

( (p) 0 (e) E (p) E (e)

r z z Z

and

(e) ( C (e) + 1 (e)

r r 8 u N z z
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Hooke's law relating the elastic strains to the stresses is

E e( e) . a - v(a + a) (19)
r r a

a( . "(a + a) (20)

E e(e) a v(a + a9) (21)
z z r

where E is Young's modulus. Elimination of a zfrom (19), (20), and (21)

byusing the yield condition (1), and substitution of the resulting elastic

strains in (18) gives the stress-strain relationships

[N 2 + 1 - (N + 1) 2 v]ar = (N 2 + 1 - 2Nv)2Gcr +N(N+ I)v We 9 + (N -1)va u (22)

[N2 + 1 - (N + 1) 2iAa = N(N + 1)v 2Ge r + N22We8 - (I - (N + 1)A]Tu (23)

Substitution of these stresses in the equation of equilibrium

r= (24
r-dr+ a r- ae 0 (24)rdr r

and substitution of the strain-displacement relations

= -du u (25)r dr 0 r

leads to the radial displacement equation

2 d2u du 2 2 (1 - 20C (26)
r 2+ dr N 2Gdr 2

where

a' = N /2(N2 + 1 - 2Nv) 
(27)
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The displacement solution of (26) and the corresponding strains are

2Gu A1r +Ara + Ar (28)
1G.= A r -  2 r ' '

Me+ aAr - r +A (29)

Me A1raI + A2 r ' - + A (30)

where

(1 - 2v)a
A - 2Nv (31)

In the elastic zones the stresses and strains are given by (5) and

(6) with a = R and Pa = -r (R). Thus, yield condition (1) applied at the

elastic-plastic interface r R gives

a (R) = - 2(1 - Nv)p b + a (32)
r b

2Ge 8(R) - 2(N - 1)pb - au (33)

Continuity of displacement at r = R is assured by equating (33) to (30)

and continuity of radial stress at r = R is assured by equating (32) to

the stress in (22) after eliminating the strains with (29) and (30). These

operations provide two algebraic equations for A1 and A2 with the solution

A,= BR1-a a[(au - (1 - 2NV)pb] (34)
1 R1 N2 (l - 2Nv)

l+a [ u - (1 - 2NV)pb] (35)
A =B R 235
2 2R N2 (1 - 2Nv)
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where

B1 - [ - (N + l)v (N - 1)Nv + N2 + 1 - (N + l)2] (1 - Nv) (36)

B2 = [ + (N + 1) v (N- 1)N- [N2 + I- (N + 1)2V] (1 - NV) (37)

The radius R of the elastic-plastic interface is found by satisfying

the pressure boundary condition at the hole. Hence, (22) with a = -asr -a

and with the strains (29) and (30) at r = a having A and A2 given by

(34) and (35), provides the equation

N [2 + 1 - (N + 1)21 a (1 - 2Nv)pa (38)
a L u - (1 - 2 Nv)pb

for the radius R, B1 and B2 being given by (36) and (37).

The above description of yielding applies with continued loading as

long as ar < a in the plastic zone. A numerical study of the stress

difference a - a was performed for values of N and V that satisfied thez r

inequality NV < (N + )v < 1 and it was found that az - ar decreases as pb

increases and becomes zero first at the hole, r = a. Explicit expressions

describing the stress field are

IN A, A 1 Ac Ca (39)C = N + (N + l)v --- (N + ()v +) -2Nv
r r
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Ca6 - N I+ (N + l)v A + aN - (N + 1) A -2N (40)
r

Ca a[+(N+1)v + a (N + i) C2vu (41)Z a r ra L J0 r-2Nv

where

C.- N2 + 1- (N +1) 2V (42)

If we set a (a) - z (a) = -pa in (39) and (41) we obtain two equations

for the loading p' and the corresponding elastic-plastic radius R' that

may be put in the form

(R)2 ,N+(N + l)v] [(M - 1)a (- 1)(1 - 2Nv)p.](3

E1,u - (1 - 2N)p] -

C 2N 2 [(i + l)Cu - +! )(1 - 2Nv) .[(N-~ 1) (!L- 1) (1 2Nv)p]
12 a F). aa a

4BB a 2 [E- (N +lI)v L + (N + 1),V] )
1 2 OL a(4 4 )

INCREASED LOADING

It is postulated that with increased loading (p > Pb) a radius

> a exists where ar(R) = z (R). In the outer annular plastic zone

< r < R we still have a < ar  (Figure 1) and the stress and strain

fields are given by (39) - (42) and (29) - (31).but the radius R > R is

no longer given by (38). In fact, satisfying the condition a (R) -a z(R)
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by equating (39) and (41) with r - N leads to

a 1) FNi+ (N + 1)v] B l(R)-(j + 1) [I - (N , 1)v B2(~

CN2 (1 - 2v)a 
(45)

u

a- 2-au- (1 - 2NV)Pb]

for the radius ratio R/R. The individual values depend on the fields

in the zone a < r < R.

It is also postulated that with increased loading o = a in ther z

plastic zone a < r < R, as shown in Figure 1, so that yielding is governed

by

fl = - Nar +a u = 0 (46)

f2 = a - Na + a = 0 (47)

Equation (46) allows the elimination of a from the equilibrium

equation (24) to leave a differential equation with the solution

a - a J\a +N u (48)

which satisfies the pressure boundary condition at the hole. Continuity

of the radial stress at the interface r = R is assured by setting r =

in (48) and (39) and equaLing the resulting expressions for a r(R). This

operation leads to the following equation for R in terms of the ratio

R/R, which is the solution of (45),
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I(N - 1p+ a j(N- N(l -2~u 
U

la a) 1 - 2Nv

[CN 1- lN /R +a4  (N - 1)Cau- (1 7 2NV)p b]

-L +(N + 1)v B1 j- - (N + l)vi B 2 Rj/J CN(l - 2Nv)

(49)

The flow rule associated with the yield condition given by (46) and

(47) is

r(1) = 2a - NX1 (50)rr r

2P) " + % 2 x (51)

C9 laa 2 aO X1 + 2

- fl af2 -N
C(P 2 .,+ 2 (52)z z z

so that

(P) + + C p  =0 e r + N ( + = g(r) (53)

Let the plastic strains be Cr , 6P) E( at radius r when the load

Pb has placed the plastic-plastic interface at r. Then, when R r

g(r) - r + Ne 8 + (54)

But in the outer plastic zone the plastic strain relationships (15)

hold so (54) reduces to g(r) - 0. Hence 53) becomes

£(P) + Ne p ) + (P) 0(55)
r z
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The plane strain condition is E = C e) + E ( . 0 which, when
z z z

combined with (55) gives

C = _N0 + Nee) + C(e) + C( e) (56)r e e r z

The yield condition (46) and a = ar reduces Hooke's law (19), (20),
z r

and (21) to Ec(e) .Ec(e) = [i - (N + l)vl] + va

r z r u (57)

Ec(e) = (N - 2v)a - a (58)

6 r u

where a is given by (48). Substitution of the elastic strains (57) andr

(58) in the radial strain expression (56) followed by substitution of the

resulting e r in the compatibility equation

de9+ C8 " Cr 0 (59)

leads to the equation

20r N-+ 2 -22N + l)v - + r
2G d (N+1 C (N )( 2 + Q V [(N -)P + a r r

dr ( 1 ( - 1) v)1 +N ' a U N-1

'60)
(N + 2)(l - 2v)au N

+ (N - i)(i + v)

Integrating (60) from r to R gives

N+1

2Gc "9 2Gee(R) (*®)

+ 2 - 2(2N + 1)v N(N - liP + r(l )2\  "

(N + 2)(1 - 2v)a [/.) N+ 1

(N - )(N + 1)(l + v) r61)
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where 2GEe(R) is determined by (30). Explicitly,

2Gc8 (R) -f -) (1 b ( - (62)
N (1-2Nv)l- v

Substitution in (56) of the elastic strains (57) and (58), with ar

given by (48), results in the radial strain formula

2 N-l (+ 2 1-2~
2Ge = -2GNe N + 2 - 2(2N + 1)v [(N - 1)p + a +)

r 9 (N-)(lv) a/ (N -l1)(1 + v)

During the analysis we postulated that a third plastic zone could

exist next to the hole in which ao <a <a, as in case 1 of Table 1.1

The result of the analysis showed that a = a in the postulated thirdz r

zone so that only two plastic zones exist in case 2.

N1UMERICAL EXAMPLE

A numerical example is presented to illustrate a comparison between

the stress and strain fields obtained by the analysis and the NONSAP

finite element code augmented by the Mohr-Coulomb yield condition. The

data are

Poisson's ratio V 1/5

Friction angle function N - 2 (,P= 19.50)

Unconfined crush strength a - 3000 psi
u

Internal pressure Pa = 2000 psi

The values of Poisson's ratio and friction angle are such that

2Nv 4/5 < 1 so the yielding with pa Pb does not occur until
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Pa = Pb = 15,000 psi, according to (3). Hence we can load with equal pa

and pb until pa = Pb = 2000 psi. Inequality (11) is 1500 psi < pa < 15,000 psi.

If we now fix pa and increase pb yielding occurs when pb reaches Pb - 4167 psi,

according to (10). As loading is increased a single plastic zone spreads

until pb = Pb - 4529 psi and R'/a = 1.10, according to (43) and (44).

Further loading creates two plastic zones and when Pb = 6000 psi, we obtain

R/R - 1.31 from (45), R/a = 1.19 from (45) and (49), and hence R/a = 1.55.

The tunnel closure at this loading is 0.86%, according to (61).

In many cases the constant a of formula (27) is approximately unity.

This value allows all unknowns to be determined explicitly so that rapid

estimations can be made.

Figures 2 and 3 provide a comparison of the stress and strain fields

as obtained by the analysis and by the NONSAP finite-element code. Figure 4

shows the finite element model used in the NONSAP calculations. The far-

field pressure is Pb = 6000 psi and a modulus of rigidity of G = 106 psi was

taken for the strain calculations. It is clear from the excellent agreement

that for problems of this type the Mohr-Coulomb yield condition was correctly

integrated into the NONSAP finite-element code. The same conclusion was

reached in reference 1 for case 1 of Table 1.
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